Toggle light / dark theme

In our lab we developed a novel nano-thermometer based on a superconducting quantum interference device (tSOT: SQUID on Tip thermometer) with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette

This tool provides scanning cryogenic thermal sensing that is 4 orders of magnitude more sensitive than previous devices allowing the detection of a sub 1 μK temperature difference. Furthermore, it is non-contact and non-invasive and allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin.

New quantum navigation device uses atoms to measure acceleration in 3D

In a new study, physicists at the University of Colorado Boulder have used a cloud of atoms chilled down to incredibly cold temperatures to simultaneously measure acceleration in three dimensions—a feat that many scientists didn’t think was possible.

The device, a new type of atom “interferometer,” could one day help people navigate submarines, spacecraft, cars and other vehicles more precisely.

“Traditional atom interferometers can only measure acceleration in a single dimension, but we live within a three-dimensional world,” said Kendall Mehling, a co-author of the new study and a graduate student in the Department of Physics at CU Boulder. “To know where I’m going, and to know where I’ve been, I need to track my acceleration in all three dimensions.”

The researchers published their paper, titled “Vector atom accelerometry in an optical lattice,” this month in the journal Science Advances. The team included Mehling; Catie LeDesma, a postdoctoral researcher in physics; and Murray Holland, professor of physics and fellow of JILA, a joint research institutebetween CU Boulder and the National Institute of Standards and Technology (NIST) (More information about the new quantum GPS)


A new quantum device could one day help spacecraft travel beyond Earth’s orbit or aid submarines as they navigate deep under the ocean with more precision than.

Quantum Materials Synthesis

It has been widely recognized that whoever controls the development of novel materials controls technologies that evolve from them. The science and technology of materials synthesis are at the heart of the discovery, design, and realization of novel quantum materials that underpin quantum technologies. From a fundamental point of view, there is a current lack of clear-cut material realizations of recently proposed quantum states that promise revolutionary advances in novel technologies, including quantum spin liquids, accessible topological superconductors, room-temperature superconductors, controllable anyonic states, etc. The current mismatch between theory and experiment strongly suggests that daunting materials challenges will hinder advances in the development of quantum technologies, such as realistic quantum computers in future decades. Indeed, despite advances in quantum information processing in recent decades, major materials challenges have significantly limited progress in quantum computing hardware platforms. It requires collaborative efforts beyond the field of quantum computing to tackle these materials challenges. There is a clear indication that existing synthesis techniques are inadequate. New synthesis technologies capable of producing new phases and structures are urgently needed.

The central theme of this Special Collection is to communicate recent developments, identify new research areas, and collectively address urgent materials challenges faced by the community of quantum materials synthesis. It will serve as a renewed effort to improve the technical infrastructure available to researchers who require highly controlled sample materials for the conduct of fundamental materials investigations. This Collection presents invited articles written by leading scientists in this community and covers quantum materials synthesis of a range of forms of materials, such as bulk single crystals, thin films/heterostructures, and two-dimensional materials.

Relativistic Motion Boosts Engine Efficiency Beyond Limits

The pursuit of more efficient engines continually pushes the boundaries of thermodynamics, and recent work demonstrates that relativistic effects may offer a surprising pathway to surpass conventional limits. Tanmoy Pandit from the Leibniz Institute of Hannover, along with Tanmoy Pandit from TU Berlin and Pritam Chattopadhyay from the Weizmann Institute of Science, and colleagues, investigate a novel thermal machine that harnesses the principles of relativity to achieve efficiencies beyond those dictated by the Carnot cycle. Their research reveals that by incorporating relativistic motion into the system, specifically through the reshaping of energy spectra via the Doppler effect, it becomes possible to extract useful work even without a temperature difference, effectively establishing relativistic motion as a valuable resource for energy conversion. This discovery not only challenges established thermodynamic boundaries, but also opens exciting possibilities for designing future technologies that leverage the fundamental principles of relativity to enhance performance.


The appendices detail the Lindblad superoperator used to describe the system’s dynamics and the transformation to a rotating frame to simplify the analysis. They show how relativistic motion affects the average number of quanta in the reservoir and the superoperators, and present the detailed derivation of the steady-state density matrix elements for the three-level heat engine, providing equations for power output and efficiency. The document describes the Monte Carlo method used to estimate the generalized Carnot-like efficiency bound in relativistic quantum thermal machines, providing pseudocode for implementation and explaining how the efficiency bound is extracted from efficiency and power pairs. Overall, this is an excellent supplementary material document that provides a comprehensive and detailed explanation of the theoretical framework, calculations, and numerical methods used in the research paper. The clear organization, detailed derivations, and well-explained physical concepts make it a valuable resource for anyone interested in relativistic quantum thermal machines.

Relativistic Motion Boosts Heat Engine Efficiency

Researchers have demonstrated that relativistic motion can function as a genuine thermodynamic resource, enabling a heat engine to surpass the conventional limits of efficiency. The team investigated a three-level maser, where thermal reservoirs are in constant relativistic motion relative to the working medium, using a model that accurately captures the effects of relativistic motion on energy transfer. The results reveal that the engine’s performance is not solely dictated by temperature differences, but is significantly influenced by the velocity of the thermal reservoirs. Specifically, the engine can operate with greater efficiency than predicted by the Carnot limit, due to the reshaping of the energy spectrum caused by relativistic motion.

Universal logical quantum photonic neural network processor via cavity-assisted interactions

Encoding quantum information within bosonic modes offers a promising direction for hardware-efficient and fault-tolerant quantum information processing. However, achieving high-fidelity universal control over bosonic encodings using native photonic hardware remains a significant challenge. We establish a quantum control framework to prepare and perform universal logical operations on arbitrary multimode multi-photon states using a quantum photonic neural network. Central to our approach is the optical nonlinearity, which is realized through strong light-matter interaction with a three-level Λ atomic system. The dynamics of this passive interaction are asymptotically confined to the single-mode subspace, enabling the construction of deterministic entangling gates and overcoming limitations faced by many nonlinear optical mechanisms. Using this nonlinearity as the element-wise activation function, we show that the proposed architecture is able to deterministically prepare a wide array of multimode multi-photon states, including essential resource states. We demonstrate universal code-agnostic control of bosonic encodings by preparing and performing logical operations on symmetry-protected error-correcting codes. Our architecture is not constrained by symmetries imposed by evolution under a system Hamiltonian such as purely χ and χ processes, and is naturally suited to implement non-transversal gates on photonic logical qubits. Additionally, we propose an error-correction scheme based on non-demolition measurements that is facilitated by the optical nonlinearity as a building block. Our results pave the way for near-term quantum photonic processors that enable error-corrected quantum computation, and can be achieved using present-day integrated photonic hardware.


Basani, J.R., Niu, M.Y. & Waks, E. Universal logical quantum photonic neural network processor via cavity-assisted interactions. npj Quantum Inf 11, 142 (2025). https://doi.org/10.1038/s41534-025-01096-9

Download citation.

Measuring a previously mysterious imaginary component of wave scattering

Inside the system, the light wave’s velocity typically changes; such a system is called a “dispersive medium.” In particular, the scattering matrix for a dispersive medium can provide the of the wave’s transition from incoming to outgoing—how long the wave stays in the system.

The time delay, in turn, provides scientists, engineers and technicians with parameters such as the phase evolution of quantum waves, the delay of a wave group in a fiber optic cable and the group delay in waveguides, among other quantities.

But what to make of the imaginary parts of the scattering matrix? In a 2016 paper in Nature Communications by lead author M. Asano of Japan, a group of scientists from several countries around the world recognized that for that meet certain requirements, the imaginary part of the scattering matrix—more precisely, the real number before “i,” the square root of-1—represented the “frequency shift” of the transitioning wave due to its passage through the scattering system. In particular, it represents the shift of the frequency in the center of the pulse (shaped as a Bell curve, a Gaussian distribution) of the incoming light pulse.

Two quantum computers with 20 qubits manage to simulate information scrambling

Four RIKEN researchers have used two small quantum computers to simulate quantum information scrambling, an important quantum-information process. This achievement illustrates a potential application of future quantum computers. The results are published in Physical Review Research.

Still in their infancy, quantum computers are only just beginning to be used for applications. But they promise to revolutionize computing when they become a mature technology.

One possible application for quantum computers is simulating the scrambling of quantum information—a key phenomenon that involves the spread of information in ranging from strange metals to .

Simulations reveal pion’s interaction with Higgs field with unprecedented precision

With the help of innovative large-scale simulations on various supercomputers, physicists at Johannes Gutenberg University Mainz (JGU) have succeeded in gaining new insights into previously elusive aspects of the physics of strong interaction.

Associate Professor Dr. Georg von Hippel and Dr. Konstantin Ottnad from the Institute of Nuclear Physics and the PRISMA+ Cluster of Excellence have calculated the interaction of the pion with the Higgs field with unprecedented precision based on . Their findings were recently published in Physical Review Letters.

New measurement station in Brazil: Quantum technology expands global network in search for dark matter

A highly sensitive quantum sensor from Jena has traveled nearly 9,000 kilometers: by truck to Hamburg, by ship across the Atlantic, and finally overland to Vassouras, Brazil.

At the campus of the Observatório Nacional, researchers from the Leibniz Institute of Photonic Technology (Leibniz-IPHT) in Jena, together with Brazilian partners, have installed a new measurement station. It is part of the worldwide GNOME project and is designed to help address one of the great unsolved questions in modern physics: the nature of .

Dark matter cannot be directly detected with conventional measurement methods. However, it demonstrably influences the motion of galaxies and the structure of the cosmos. Understanding its nature remains one of the central open problems in physics.

/* */