Toggle light / dark theme

A new open-source program for quantum physics helps researchers obtain results in record time

Scientists at the Institute for Photonic Quantum Systems (PhoQS) and the Paderborn Center for Parallel Computing (PC2) at Paderborn University have developed a powerful open-source software tool that allows them to simulate light behavior in quantum systems.

The unique feature of this tool, named “Phoenix,” is that researchers can use it to very quickly investigate complex effects to a level of detail that was previously unknown, and all without needing knowledge of high-performance computing. The results have now been published in Computer Physics Communications.

Phoenix solves equations that describe how light interacts with material at the , which is essential for understanding and for the design of future technologies such as quantum computers and advanced photonic devices.

Modular network offers fault-tolerant scaling of superconducting qubit devices

Quantum computers, devices that can perform computations relying on the principles of quantum mechanics, are expected to outperform classical computers on some types of optimization and processing tasks. While physicists and engineers have introduced various quantum computing systems over the past decades, reliably scaling these systems so that they can tackle real-world problems while correcting errors arising during computations has so far proved challenging.

Researchers at the University of Illinois at Urbana-Champaign recently introduced a new, modular quantum architecture for scaling superconducting quantum processors in a fault-tolerant, scalable and reconfigurable way. Scaling in a fault-tolerant way is required to maintain the and conditions necessary to perform long-term quantum computations.

Their proposed system, outlined in a paper published in Nature Electronics, is comprised of several modules (i.e., superconducting devices) that can operate independently and be connected to others via a low-loss interconnect, forming a larger quantum network.

Physicists still divided about quantum world, 100 years on

The theory of quantum mechanics has transformed daily life since being proposed a century ago, yet how it works remains a mystery—and physicists are deeply divided about what is actually going on, a survey in the journal Nature said Wednesday.

“Shut up and calculate!” is a famous quote in that illustrates the frustration of scientists struggling to unravel one of the world’s great paradoxes.

For the last century, equations based on have consistently and accurately described the behavior of extremely small objects.

Not Big Bang, new theory uses ‘Gravity’ and ‘Quantum Physics’ to explain the universe’s birth

A groundbreaking study from the Universities of Barcelona and Padua challenges the inflation theory, suggesting the universe began from a stable De Sitter space, driven by gravity and quantum mechanics alone. This model explains the formation of cosmic structures through quantum fluctuations evolving into gravitational waves, offering a simpler, testable alternative to the Big Bang’s fiery start.

From thousands of defects, one magnesium oxide qubit emerges as a quantum contender

Used as a versatile material in industry and health care, magnesium oxide may also be a good candidate for quantum technologies. Research led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory and published in npj Computational Materials reveals a defect in the mineral that could be useful for quantum applications.

Researchers are exploring possible building blocks, known as qubits, for systems that could exploit . These systems could operate in various devices that may outperform classical supercomputers, form unhackable networks or detect the faintest signals.

Unlocking the potential of qubits for applications such as quantum computing, sensing and communications requires an understanding of materials on the atomic scale.

Light Versus Light: The Secret Physics Battle That Could Rewrite the Rules

In a fascinating dive into the strange world of quantum physics, scientists have shown that light can interact with itself in bizarre ways—creating ghost-like virtual particles that pop in and out of existence.

This “light-on-light scattering” isn’t just a theoretical curiosity; it could hold the key to solving long-standing mysteries in particle physics.

Quantum light: why lasers don’t clash like lightsabers.

How materials science could revolutionise technology — with Jess Wade

Jess Wade explains the concept of chirality, and how it might revolutionise technological innovation.

Join this channel to get access to perks:
https://www.youtube.com/channel/UCYeF244yNGuFefuFKqxIAXw/join.
Watch the Q&A here (exclusively for our Science Supporters): https://youtu.be/VlkHT-0zx9U

This lecture was recorded at the Ri on 14 June 2025.

Imagine if we could keep our mobile phones on full brightness all day, without worrying about draining our battery? Or if we could create a fuel cell that used sunlight to convert water into hydrogen and oxygen? Or if we could build a low-power sensor that could map out brain function?

Whether it’s optoelectronics, spintronics or quantum, the technologies of tomorrow are underpinned by advances in materials science and engineering. For example, chirality, a symmetry property of mirror-image systems that cannot be superimposed, can be used to control the spin of electrons and photons. Join functional materials scientist Jess Wade as she explores how advances in chemistry, physics and materials offer new opportunities in technological innovation.

/* */