Researchers use quantum computer to simulate fundamental forces, marking a major step toward solving complex physics.

World’s first on-chip error-resistant photonic qubit signals a major leap for scalable, modular quantum computing.
IN A NUTSHELL 🔬 Brown University engineers utilize quantum entanglement to enhance 3D holographic imaging without traditional infrared cameras. 💡 The new technique, Quantum Multi-Wavelength Holography, overcomes phase wrapping challenges to deliver high-fidelity images. 🔍 By pairing infrared and visible light photons, the method captures both intensity and phase, offering unprecedented depth resolution. 🌟 Funded
IN A NUTSHELL 🔬 Researchers have developed a groundbreaking method to convert noisy lasers into stable beams using nonlinear optical fibers and spectral filters. 📉 This innovative technique achieves noise levels 30 times lower than traditional laser beams while maintaining high intensity. 💡 The discovery enables the production of intensity-squeezed light, reducing photon variation beyond
In a global first, US scientists demonstrate quantum encryption in a live nuclear reactor using quantum key distribution approach.
Among the crystalline materials whose edges host exotic quantum states are the Dirac semimetal and the Chern insulator. In the semimetal, the edge states are localized and not protected from perturbations by their topology; in the insulator, they move in one direction and are protected. Proposed by theorists in 2011, a hybrid phase called a Chern semimetal simultaneously hosts localized and one-way edge states, both with topological protection (see Synopsis: Quantum Hall Anomaly in 3D). Now Jianfeng Chen and Cheng-Wei Qiu at the National University of Singapore and their colleagues have realized this phase in a two-dimensional photonic metamaterial [1]. The researchers say that their system provides a platform for nanophotonic applications and a playground for topological physics.
The researchers built a honeycomb-shaped, single-layer array of millimeter-sized magnetic rods. They then applied a carefully tuned, spatially varying magnetic field to this array, creating a pattern in which only specific rods were magnetized. Lastly, they placed a source of microwaves at the array’s boundary and observed how the microwave radiation traveled through the structure. The team found that the magnetization pattern caused some radiation to localize at the array’s boundary and other radiation to move in one direction around the boundary. All these edge states were topologically protected in that they were immune to scattering caused by slight differences in the alignment, shape, and size of the rods and other material imperfections.
Thanks to the coexistence and potential hybridization of localized and one-way states, a photonic Chern semimetal can reduce the speed of transmitted radiation. The researchers found that their metamaterial exhibited a slowdown factor of up to 30 while preserving the radiation’s topological protection. They say that this capability could be useful for nanophotonic technology.
Quantum materials exhibit remarkable emergent properties when they are excited by external sources. However, these excited states decay rapidly once the excitation is removed, limiting their practical applications.
A team of researchers from Harvard University and the Paul Scherrer Institute PSI have now demonstrated an approach to stabilize these fleeting states and probe their quantum behavior using bright X-ray flashes from the X-ray free electron laser SwissFEL at PSI. The findings are published in the journal Nature Materials.
Some materials exhibit fascinating quantum properties that can lead to transformative technologies, from lossless electronics to high-capacity batteries. However, when these materials are in their natural state, these properties remain hidden, and scientists need to gently ask for them to pop up.
In a study by TU Wien and FU Berlin, researchers have measured what happens when quantum physical information is lost. This clarifies important connections between thermodynamics, information theory and quantum physics.
Heat and information—these are two very different concepts that, at first glance, appear to have nothing to do with each other. Heat and energy are central concepts in thermodynamics, an important field of physics and even one of its cornerstones. Information theory, on the other hand, is an abstract topic in mathematics.
But as early as the 1960s, physicist Rolf Landauer was able to show that the two are closely related: the deletion of information is inevitably linked to the exchange of energy. You cannot delete a data storage device without releasing heat to the outside world.
Transistors are fundamental to microchips and modern electronics. Invented by Bardeen and Brattain in 1947, their development is one of the 20th century’s key scientific milestones. Transistors work by controlling electric current using an electric field, which requires semiconductors. Unlike metals, semiconductors have fewer free electrons and an energy band gap that makes it harder to excite electrons.
Doping introduces charge carriers, enabling current flow under an electric field. This allows for nonlinear current-voltage behavior, making signal amplification or switching possible, as in p–n junctions. Metals, by contrast, have too many free electrons that quickly redistribute to cancel external fields, preventing controlled current flow—hence, they can’t be used as traditional transistors.
However, recent advances show promise in ultrathin superconducting metals as potential transistor materials. When cooled below a critical temperature, these materials carry current with zero resistance. This behavior arises from the formation of Cooper pairs—electrons bound by lattice vibrations—that condense into a coherent quantum state, immune to scattering and energy loss.
IN A NUTSHELL 🔬 Researchers have developed QNodeOS, an innovative operating system that unifies different quantum computing technologies. 🌐 QNodeOS features two main units, the CNPU and QNPU, which simplify the management of diverse quantum devices through a single interface. 🔑 The QDriver acts as a translator, converting universal instructions into specific commands for various