Toggle light / dark theme

When light hits the surface of some materials, namely those exhibiting a property known as photoresistance, it can induce changes in their electrical conductivity. Graphene is among these materials, as incident light can excite electrons within it, affecting its photoconductivity.

Researchers at the National University of Singapore report a deviation from standard photoresistive behaviors in doped metallic . Their paper, published in Nature Nanotechnology, shows that when exposed to continuous-wave terahertz (THz) radiation, Dirac electrons in this material can be thermally decoupled from the lattice, prompting their hydrodynamic transport.

“Our research has emerged from the growing recognition that traditional models of electron behavior don’t fully capture the properties of certain advanced materials, particularly in the ,” Denis Bandurin, Assistant Professor at NUS, lead of the experimental condensed matter physics lab and senior author of the paper, told Tech Xplore.

As quantum computing grows, researchers are urgently preparing for its impact on cybersecurity by developing quantum-resistant cryptographic protocols.

This research, led by experts at the National Center for Supercomputing Applications, focuses on safeguarding supercomputing infrastructures against quantum threats.

Quantum Computing and Cybersecurity.

Artificial intelligence has been infiltrating our daily workflows and routine tasks for while now. It may be AI working in the background, as with Gemini’s integration across Google products, or you may be engaging more directly with popular content generators such as OpenAI’s ChatGPT and Dall-E. Looming in the not-too-distant future are amped-up virtual assistants.

As if AI itself weren’t futuristic enough, now there’s a whole new leap forward on the horizon: quantum AI. It’s a fusion of artificial intelligence with unconventional and still largely experimental quantum computing into a super-fast and highly efficient technology. Quantum computers will be the muscles, while AI will be the brains.

Here’s a quick breakdown of the basics to help you better understand quantum AI.

The SPINNING project, under the leadership of the Fraunhofer Institute, is pioneering a quantum computer using diamond-based spin photons, promising lower cooling requirements, longer operating times, and lower error rates compared to conventional quantum systems.

This innovative approach leverages the unique properties of diamonds to create stable qubits, aiming for high scalability and fidelity in quantum computing. Recent achievements include the successful demonstration of qubit entanglement over long distances, significantly outperforming traditional quantum computers in error rate and coherence time.

The SPINNING project: innovating with diamond-based technology.

A small twist allowed scientists to capture a rare quantum phase that has been under the shadows for decades.


“Wigner molecular crystals are important because they may exhibit novel transport and spin properties that could be useful for future quantum technologies such as quantum simulations,” researchers at the Lawrence Berkeley National Laboratory (LBL) note.

For the first time, LBL researchers have captured direct images of the Wigner molecular crystal using scanning tunneling microscopy (STM) —- an imaging technique that produces high-resolution visuals of materials at the atomic scale.

“We are the first to directly observe this new quantum phase, which was quite unexpected. It’s pretty exciting,” said Feng Wang, one of the study authors and a physicist at the University of California, Berkeley.

This was Mastercard in March: You probably do it every day without a second thought — shop online with your credit card, or install an update on your phone, or send a confidential file to a co-worker.


Mastercard’s efforts include a pilot to test whether quantum key distribution would work on its complex global network.

Quantum theory is distinguished by its apparent indeterminism, a feature that raises the question: Is this uncertainty inherent to Nature, or might…


Johannes Fankhauser

Institute for Theoretical Physics, University of Innsbruck, Technikerstraße 21a, 6,020 Innsbruck, Austria Faculty of Philosophy, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK

The combined results also speak to a more fundamental goal. For decades, the quantum computing community has been trying to establish quantum advantage —a task that quantum computers can do that a classical one would struggle with. Usually, researchers understand quantum advantage to mean that a quantum computer can do the task in far fewer steps.

The new papers show that quantum memory lets a quantum computer perform a task not necessarily with fewer steps, but with less data. As a result, researchers believe this in itself could be a way to prove quantum advantage. “It allows us to, in the more near term, already achieve that kind of quantum advantage,” said Hsin-Yuan Huang, a physicist at Google Quantum AI.

But researchers are excited about the practical benefits too, as the new results make it easier for researchers to understand complex quantum systems.

Did the laws of physics come into being at the Big Bang?

Watch the full talk at https://iai.tv/video/the-laws-of-physics-are-not-fixed-joao-…escription.

We think that the laws of physics are unchanging and cannot be violated. Join pioneering physicist, João Magueijo, as he argues that everything we thought we knew about the laws of physics is wrong. They do change. And they can be violated. What’s more, a new understanding of these laws could help solve the mystery of dark matter.

#physics #science #speedoflight.