Toggle light / dark theme

Chiral plasmonic nanostructures push the limits of light manipulation on the nanoscale

Researchers from ICMAB are revolutionizing how we manipulate light at the nanoscale using chiral plasmonic structures—nanomaterials designed to interact with polarized light in extraordinary ways.

ICMAB researchers from the NANOPTO group at ICMAB have recently published two studies demonstrating how cost-effective fabrication techniques can produce highly efficient chiral nanostructures with potential applications in sensors, imaging, and even quantum technologies.

The first study, published in Nature Communications, showcases self-assembled chiral plasmonic architectures (triskelion patterns) made from gold and silver nanoparticles. These structures demonstrate exceptional optical responses, selectively interacting with circularly polarized light, opening up exciting possibilities for advanced optoelectronic devices.

Researchers find major clue to consciousness

Learn data science using real world examples on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

We still don’t know what “consciousness” actually means. But in a new study, researchers have used the equations of quantum mechanics to determine a brain’s “criticality,” a measure which allows them to separate waking brains from sleeping ones. I think they’re onto something. Let’s take a look.

Paper: https://journals.aps.org/pre/abstract… Check out my new quiz app ➜ http://quizwithit.com/ 💌 Support me on Donorbox ➜ https://donorbox.org/swtg 📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/ 👉 Transcript with links to references on Patreon ➜ / sabine 📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… 👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 🖼️ On instagram ➜ / sciencewtg #science #sciencenews #consciousness.

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #sciencenews #consciousness

Quantum quasiparticle could make future quantum computers more reliable

Supported by the U.S. National Science Foundation, physicists have revealed the presence of a previously unobserved type of subatomic phenomenon called a fractional exciton. Their findings confirm theoretical predictions of a quasiparticle with unique quantum properties that behaves as though it is made of equal fractions of opposite electric charges bound together by mutual attraction.

The discovery was supported by NSF through multiple grants and laboratory work performed at the NSF National High Magnetic Field Laboratory in Tallahassee, Florida. The results are published in Nature and show potential for developing new ways to improve how information is stored and manipulated at the quantum level, which could lead to faster and more reliable quantum computers.

“Our findings point toward an entirely new class of quantum particles that carry no overall charge but follow unique quantum statistics,” says Jia Li, leader of the research team and associate professor of physics at Brown University. “The most exciting part is that this discovery unlocks a range of novel quantum phases of matter, presenting a new frontier for future research, deepening our understanding of fundamental physics and even opening up new possibilities in quantum computation.”

Harvard Builds Laser the Size of a Chip, Bright Enough to Map Invisible Worlds

Physicists at Harvard have developed a powerful new laser-on-a-chip that emits bright pulses in the mid-infrared spectrum – an elusive and highly useful light range for detecting gases and enabling new spectroscopic tools.

The device, which packs capabilities of much larger systems into a tiny chip, doesn’t need any external components. It merges breakthrough photonic design with quantum cascade laser tech and could soon revolutionize environmental monitoring and medical diagnostics by detecting thousands of light frequencies in one go.

Breakthrough in compact mid-infrared laser technology.

Entanglement as the Currency of Quantum Measurement

A powerful framework allows scientists to understand and classify joint quantum measurements—procedures essential for many quantum technologies.

Two key, yet enigmatic, aspects of quantum physics are entanglement and the act of measuring a quantum system. These elements combine in unique ways in so-called joint measurements, where multiple systems are simultaneously measured in a way that accounts for their entanglement. Joint measurements are valuable because they can extract hidden information about the combined state of the systems. Remarkably, the outcome of a joint measurement can be replicated even if the systems are kept far apart, which has many practical benefits. Such “localization” procedures require local operations to be performed on each system and some extra entanglement to be shared beforehand. Now Jef Pauwels and colleagues at the University of Geneva have investigated how much of this shared entanglement is needed to localize a given joint measurement [1].

Physicists Shock the World: Top Quark Discovery Sheds Light on the Universe’s First Moments

CERN scientists have detected top quark pairs in lead-lead collisions for the first time, confirming their presence in the early universe’s quark-gluon plasma. This groundbreaking discovery unlocks new insights into how matter formed just microseconds after the Big Bang. Join us as we explore the science, history, and future implications of this monumental finding.

Paper link : https://arxiv.org/pdf/2411.10186
paper link : https://arxiv.org/pdf/0810.5529
paper link : https://arxiv.org/pdf/2005.

Visit our website for up-to-the-minute updates:
www.nasaspacenews.com.

Follow us.
Facebook: https://www.facebook.com/nasaspacenews.
Twitter: https://twitter.com/SpacenewsNasa.

Join this channel to get access to these perks:
https://www.youtube.com/channel/UCEuhsgmcQRbtfiz8KMfYwIQ/join.

#NSN #NASA #Astronomy#TopQuark.

Quantum Particle Zeta 9 Just Broke the Human Thought Barrier

🧠💥 Quantum Particle Zeta‑9 Just Broke the Human Thought Barrier.
A newly discovered particle is doing something no subatomic entity should be capable of — reacting to human thought before it happens. Welcome to the edge of physics, where consciousness and quantum mechanics collide.

In this video, we unpack the stunning results from recent Fermilab experiments involving Zeta‑9, a particle that appears to anticipate human intention. Is it just quantum weirdness—or evidence that the human mind is more than biology?

You’ll discover:

What Zeta‑9 is and how it was discovered.

Why its behavior defies causality and classical physics.

Physicists Designed a Quantum Rubik’s Cube And Found The Best Way to Solve It

Quantum physics already feels like a puzzle, but now scientists have made it more literal. A team of mathematicians from the University of Colorado Boulder has designed a quantum Rubik’s cube, with infinite possible states and some weird new moves available to solve it.

The classic (and classical) Rubik’s cube is what’s known as a permutation puzzle, which requires players to perform certain actions to rearrange one of a number of possible permutations into a ‘solved’ state.

In the case of the infamous cube, that’s around 43 quintillion possible combinations of small colored blocks being sorted into six, consistently-colored faces through a series of constrained movements.

Quantum Mechanics

Quantum mechanics is, at least at first glance and at least in part, a mathematical machine for predicting the behaviors of microscopic particles — or, at least, of the measuring instruments we use to explore those behaviors — and in that capacity, it is spectacularly successful: in terms of power and precision, head and shoulders above any theory we have ever had. Mathematically, the theory is well understood; we know what its parts are, how they are put together, and why, in the mechanical sense (i.e., in a sense that can be answered by describing the internal grinding of gear against gear), the whole thing performs the way it does, how the information that gets fed in at one end is converted into what comes out the other. The question of what kind of a world it describes, however, is controversial; there is very little agreement, among physicists and among philosophers, about what the world is like according to quantum mechanics. Minimally interpreted, the theory describes a set of facts about the way the microscopic world impinges on the macroscopic one, how it affects our measuring instruments, described in everyday language or the language of classical mechanics. Disagreement centers on the question of what a microscopic world, which affects our apparatuses in the prescribed manner, is, or even could be, like intrinsically; or how those apparatuses could themselves be built out of microscopic parts of the sort the theory describes.[1]

That is what an interpretation of the theory would provide: a proper account of what the world is like according to quantum mechanics, intrinsically and from the bottom up. The problems with giving an interpretation (not just a comforting, homey sort of interpretation, i.e., not just an interpretation according to which the world isn’t too different from the familiar world of common sense, but any interpretation at all) are dealt with in other sections of this encyclopedia. Here, we are concerned only with the mathematical heart of the theory, the theory in its capacity as a mathematical machine, and — whatever is true of the rest of it — this part of the theory makes exquisitely good sense.