Quantum teleportation is a technique allowing the transfer of quantum information between two distant quantum objects, a sender and a receiver, using a phenomenon called quantum entanglement as a resource.
The unique feature of this process is that the actual information is not transferred by sending quantum bits (qubits) through a communication channel connecting the two parties; instead, the information is destroyed at one location and appears at the other one without physically traveling between the two. This surprising property is enabled by quantum entanglement, accompanied by the transmission of classical bits.
There is a deep interest in quantum teleportation nowadays within the field of quantum communications and quantum networks because it would allow the transfer of quantum bits between network nodes over very long distances, using previously shared entanglement.
In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.
Virginia Lorenz, a professor of physics at the University of Illinois Urbana-Champaign, studies Lambda-type optical quantum memory devices, a promising technology that relies on light interacting with a large group of atoms. She is developing a device based on hot metallic vapor with graduate student Kai Shinbrough.
As the researchers work towards a practical device, they are also providing some of the first theoretical analyses of Lambda-type devices. Most recently, they reported the first variance-based sensitivity analysis describing the effects of experimental noise and imperfections in Physical Review A.
RIKEN physicists have created an exotic quantum state in a device with a disk-like geometry for the first time, showing that edges are not required. This demonstration opens the way for realizing other novel electronic behavior. Their findings are published in Nature Physics.
Physics has long moved on from the three classic states of matter: solid, liquid and gas. A better theoretical understanding of quantum effects in crystals and the development of advanced experimental tools to probe and measure them has revealed a whole host of exotic states of matter.
A prominent example of this is the topological insulator: a kind of crystalline solid that exhibits wildly different properties on their surfaces than in the rest of the material. The best-known manifestation of this is that topological insulators conduct electricity on their surfaces but are insulating in their interiors.
Quantum computers have the potential to break common cryptography techniques, search huge datasets and simulate quantum systems in a fraction of the time it would take today’s computers. But before this can happen, engineers need to be able to harness the properties of quantum bits or qubits.
Currently, one of the leading methods for creating qubits in materials involves exploiting the structural atomic defects in diamond. But several researchers at the University of Chicago and Argonne National Laboratory believe that if an analogue defect could be engineered into a less expensive material, the cost of manufacturing quantum technologies could be significantly reduced. Using supercomputers at the National Energy Research Scientific Computing Center (NERSC), which is located at the Lawrence Berkeley National Laboratory (Berkeley Lab), these researchers have identified a possible candidate in aluminum nitride. Their findings were published in Nature Scientific Reports.
“Silicon semiconductors are reaching their physical limits—it’ll probably happen within the next five to 10 years—but if we can implement qubits into semiconductors, we will be able to move beyond silicon,” says Hosung Seo, University of Chicago Postdoctoral Researcher and a first author of the paper.
Edited by Manuel Rubio. Narrated and Script Edited by David Kelly. Thumbnail art by Ettore Mazza, the GOAT: https://www.instagram.com/ettore.mazza/?hl=en. Animations by Jero Squartini https://fiverr.com/freelancers/jerosq. Stock footage taken from Videoblocks and Artgrid, music from Epidemic Sound, Artlist, Silver Maple and Yehezkel Raz. Space imagery also used from NASA and ESO.
Specific image credits: AT Service via Wikimedia for images of Kip Thorne and Bryce DeWitt. Massachusetts Institute of Technology, via Wikimedia Commons for the image of Bruno Rossi.
00:00 Introduction. 06:00 The Block Universe. 16:25 Visiting The Future. 27:00 Visiting The Past. 37:59 Time Streams.
Try out my quantum mechanics course (and many others on math and science) on Brilliant using the link https://brilliant.org/sabine. You can get started for free, and the first 200 will get 20% off the annual premium subscription.
If you’ve been following my channel for a really long time, you might remember that some years ago I made a video about whether faster-than-light travel is possible. I was trying to explain why the arguments saying it’s impossible are inconclusive and we shouldn’t throw out the possibility too quickly, but I’m afraid I didn’t make my case very well. This video is a second attempt. Hopefully this time it’ll come across more clearly!
Accelerating Leadership In Quantum Information Sciences — Dr. Charles Tahan, Ph.D., Assistant Director for Quantum Information Science (QIS); Director, National Quantum Coordination Office, Office of Science and Technology Policy, The White House.
Dr. Charles Tahan, Ph.D. is the Assistant Director for Quantum Information Science (QIS) and the Director of the National Quantum Coordination Office (NQCO) within the White House Office of Science and Technology Policy (https://www.quantum.gov/nqco/). The NQCO ensures coordination of the National Quantum Initiative (NQI) and QIS activities across the federal government, industry, and academia.
Dr. Tahan is on detail from the Laboratory for Physical Sciences (https://www.lps.umd.edu/) where he drove technical progress in the future of information technology as Technical Director. Research at LPS spans computing, communications, and sensing, from novel device physics to high-performance computer architectures. As a technical lead, Dr. Tahan stood up new research initiatives in silicon and superconducting quantum computing; quantum characterization, verification, and validation; and new and emerging qubit science and technology. As a practicing physicist, he is Chief of the intramural QIS research programs at LPS and works with students and postdocs from the University of Maryland-College Park to conduct original research in quantum information and device theory. His contributions have been recognized by the Researcher of the Year Award, the Presidential Early Career Award for Scientists and Engineers, election as a Fellow of the American Physical Society, and as an ODNI Science and Technology Fellow. He continues to serve as Chief Scientist of LPS.
Dr. Tahan earned a PhD in Physics at the University of Wisconsin-Madison in 2005 and a B.Sc. in Physics and Computer Science with Highest Honors from the College of William & Mary in 2000. From 2005–2007 he was a National Science Foundation Distinguished International Postdoctoral Research Fellow at the University of Cambridge, UK; the Center for Quantum Computing Technology, Australia; and the University of Tokyo, Japan. He served as chief technical consultant for quantum information science and technology programs in DARPA’s Microsystems Technology Office (MTO) while at Booz Allen Hamilton from 2007–2009. He has a long-term commitment to science and society including creating one of the first games meant to build intuition about quantum computing.