Menu

Blog

Archive for the ‘quantum physics’ category: Page 39

Apr 25, 2024

Scientists tune the entanglement structure in an array of qubits

Posted by in categories: computing, particle physics, quantum physics

Entanglement is a form of correlation between quantum objects, such as particles at the atomic scale. The laws of classical physics cannot explain this uniquely quantum phenomenon, yet it is one of the properties that explain the macroscopic behavior of quantum systems.

Because entanglement is central to the way quantum systems work, understanding it better could give scientists a deeper sense of how information is stored and processed efficiently in such systems.

Qubits, or quantum bits, are the building blocks of a quantum computer. However, it is extremely difficult to make specific entangled states in many-qubit systems, let alone investigate them. There are also a variety of entangled states, and telling them apart can be challenging.

Apr 25, 2024

The Big Quantum Chill: NIST Scientists Modify Common Lab Refrigerator to Cool Faster With Less Energy

Posted by in categories: computing, quantum physics, space

From stabilizing qubits (the basic unit of information in a quantum computer) to maintaining the superconducting properties of materials and keeping NASA’s James Webb Space Telescope cool enough to observe the heavens, ultracold refrigeration is essential to the operation of many devices and sensors. For decades, the pulse tube refrigerator (PTR) has been the workhorse device for achieving temperatures as cold as the vacuum of outer space.

These refrigerators cyclically compress (heat) and expand (cool) high pressure helium gas to achieve the “Big Chill,” broadly analogous to the way a household refrigerator uses the transformation of freon from liquid to vapor to remove heat. For more than 40 years, the PTR has proven its reliability, but it is also power-hungry, consuming more electricity than any other component of an ultralow temperature experiment.

Apr 25, 2024

A new kind of experiment at the LHC could unravel quantum reality

Posted by in category: quantum physics

The Large Hadron Collider is testing entanglement in a whole new energy range, probing the meaning of quantum theory – and the possibility that an even stranger reality lies beneath.

By Michael Brooks

Apr 25, 2024

Demonstration of heralded three-photon entanglement on a photonic chip

Posted by in categories: computing, particle physics, quantum physics

Photonic quantum computers are computational tools that leverage quantum physics and utilize particles of light (i.e., photons) as units of information processing. These computers could eventually outperform conventional quantum computers in terms of speed, while also transmitting information across longer distances.

Despite their promise, photonic quantum computers have not yet reached the desired results, partly due to the inherently weak interactions between individual photons. In a paper published in Physical Review Letters, researchers at University of Science and Technology of China demonstrated a large cluster state that could facilitate quantum computation in a photonic system, namely three-photon entanglement.

“Photonic quantum computing holds promise due to its operational advantages at and minimal decoherence,” Hui Wang, co-author of the paper, told Phys.org.

Apr 25, 2024

Space Age Security: How Satellites Could Extend Quantum Encryption Globally

Posted by in categories: computing, encryption, engineering, internet, quantum physics, satellites, security

How can we guarantee that data sent over the internet is only accessible to its intended recipient? Currently, our data is secured using encryption methods based on the premise that factoring large numbers is a complex task. However, as quantum computing advances, these encryption techniques may become vulnerable and potentially ineffective in the future.

Encryption by means of physical laws

Tobias Vogl, a professor of Quantum Communication Systems Engineering, is working on an encryption process that relies on principles of physics. “Security will be based on the information being encoded into individual light particles and then transmitted. The laws of physics do not permit this information to be extracted or copied. When the information is intercepted, the light particles change their characteristics. Because we can measure these state changes, any attempt to intercept the transmitted data will be recognized immediately, regardless of future advances in technology,” says Tobias Vogl.

Apr 25, 2024

Quantum Computing Meets Genomics: The Dawn of Hyper-Fast DNA Analysis

Posted by in categories: biotech/medical, computing, information science, quantum physics

A new project unites world-leading experts in quantum computing and genomics to develop new methods and algorithms to process biological data.

Researchers aim to harness quantum computing to speed up genomics, enhancing our understanding of DNA and driving advancements in personalized medicine

A new collaboration has formed, uniting a world-leading interdisciplinary team with skills across quantum computing, genomics, and advanced algorithms. They aim to tackle one of the most challenging computational problems in genomic science: building, augmenting, and analyzing pangenomic datasets for large population samples. Their project sits at the frontiers of research in both biomedical science and quantum computing.

Apr 24, 2024

Quantum forces used to automatically assemble tiny device

Posted by in category: quantum physics

The very weak forces of attraction caused by the Casimir effect can now be used to manipulate microscopic gold flakes and turn them into a light-trapping tool.

By Karmela Padavic-Callaghan

Apr 24, 2024

Inside the Race to Revolutionize Quantum Computing

Posted by in categories: quantum physics, robotics/AI

AI is the technology trend of the moment—but what’s 10 years down the road? Some experts say quantum computing will be the next game changer. WSJ visited IBM’s quantum computing lab to learn why.

Apr 24, 2024

Toshiba Europe And Single Quantum Partner to Provide Extended Long-Distance QKD Deployment Capability

Posted by in categories: computing, nanotechnology, quantum physics

PRESS RELEASE — Toshiba Europe Ltd. and Single Quantum B.V. have collaborated to test and validate long-distance deployments of Quantum Key Distribution (QKD) technology. Following extended validation testing of Toshiba’s QKD technology and Single Quantum’s superconducting nanowire single photon detectors (SNSPDs), both companies are pleased to announce a solution that substantially extends the transmission range for QKD deployment over fibre connections, up to and beyond 300km.

QKD uses the quantum properties of light to generate quantum secure keys that are immune to decryption by both high performance conventional and quantum computers. Toshiba’s QKD is deployed over fibre networks, either coexisting with conventional data transmissions on deployed ‘lit’ fibres, or on dedicated quantum fibres.

Toshiba’s unique QKD technology can deliver quantum secure keys in a single fibre optic link at distances of up to 150km using standard integrated semiconductor devices. Achieving longer distance QKD fibre transmission is challenging due to the attenuation of the quantum signals along the fibre length, (the optical loss of the fibre link). To provide extended QKD transmission, operators typically concatenate fibre links together with trusted nodes along the fibre route which house QKD systems that relay the secret keys.

Apr 23, 2024

The big quantum chill: Scientists modify common lab refrigerator to cool faster with less energy

Posted by in categories: energy, quantum physics

By modifying a refrigerator commonly used in both research and industry, researchers at the National Institute of Standards and Technology (NIST) have drastically reduced the time and energy required to cool materials to within a few degrees above absolute zero.

Page 39 of 768First3637383940414243Last