Scientists have used high-energy particle collisions to peer inside protons, the particles that sit inside the nuclei of all atoms. This has revealed for the first time that quarks and gluons, the building blocks of protons, experience the phenomenon of quantum entanglement.
Category: quantum physics – Page 39
Scientists at Penn Engineering have developed a quantum sensing method that detects signals from individual atoms.
From the early days of quantum mechanics, scientists have thought that all particles can be categorized into one of two groups—bosons or fermions—based on their behavior.
However, new research by Rice University physicist Kaden Hazzard and former Rice graduate student Zhiyuan Wang shows the possibility of particles that are neither bosons nor fermions. Their study, published in Nature, mathematically demonstrates the potential existence of paraparticles that have long been thought impossible.
“We determined that new types of particles we never knew of before are possible,” said Hazzard, associate professor of physics and astronomy.
Amid the many mysteries of quantum physics, subatomic particles don’t always follow the rules of the physical world. They can exist in two places at once, pass through solid barriers and even communicate across vast distances instantaneously. These behaviors may seem impossible, but in the quantum realm, scientists are exploring an array of properties once thought impossible.
In a new study, physicists at Brown University have now observed a novel class of quantum particles called fractional excitons, which behave in unexpected ways and could significantly expand scientists’ understanding of the quantum realm.
“Our findings point toward an entirely new class of quantum particles that carry no overall charge but follow unique quantum statistics,” said Jia Li, an associate professor of physics at Brown.
A research team led by The Hong Kong University of Science and Technology (HKUST) has achieved a groundbreaking quantum simulation of the non-Hermitian skin effect in two dimensions using ultracold fermions, marking a significant advance in quantum physics research.
Quantum mechanics, which typically considers a well-isolated system from its environment, describes ubiquitous phenomena ranging from electron behavior in solids to information processing in quantum devices. This description typically requires a real-valued observable—specifically, a Hermitian model (Hamiltonian).
The hermiticity of the model, which guarantees conserved energy with real eigenvalues, breaks down when a quantum system exchanges particles and energy with its environment. Such an open quantum system can be effectively described by a non-Hermitian Hamiltonian, providing crucial insights into quantum information processing, curved space, non-trivial topological phases, and even black holes. Nevertheless, many questions about non-Hermitian quantum dynamics remain unanswered, especially in higher dimensions.
Ferroelectrics are special materials with polarized positive and negative charges—like a magnet has north and south poles—that can be reversed when external electricity is applied. The materials will remain in these reversed states until more power is applied, making them useful for data storage and wireless communication applications.
Now, turning a non-ferroelectric material into one may be possible simply by stacking it with another ferroelectric material, according to a team led by scientists from Penn State who demonstrated the phenomenon, called proximity ferroelectricity.
The discovery offers a new way to make ferroelectric materials without modifying their chemical formulation, which commonly degrades several useful properties. This has implications for next-generation processors, optoelectronics and quantum computing, the scientists said. The researchers published their findings in the journal Nature.
We systematically investigated the detection performance of Al nanostrips for single photons at various wavelengths. The Al films were deposited using magnetron sputtering, and the sophisticated nanostructures and morphology of the deposited films were revealed through high-resolution transmission electron microscopy. The fabricated Al meander nanostrips, with a thickness of 4.2 nm and a width of 178 nm, exhibited a superconducting transition temperature of 2.4 K and a critical current of approximately 5 μA at 0.85 K. While the Al nanostrips demonstrated a saturated internal quantum efficiency for 405-nm photons, the internal detection efficiency exhibited an exponential dependence on bias current without any saturation tendency for 1550-nm photons. This behavior can be attributed to the relatively large diffusion coefficient and coherence length of the Al films.
Simulations deliver hints on how the multiverse produced according to the many-worlds interpretation of quantum mechanics might be compatible with our stable, classical Universe.
The intricate relationship between quantum mechanics and classical physics has long puzzled scientists. Quantum mechanics operates in a bizarre world where particles can exist in multiple states simultaneously, a concept known as superposition. However, this principle appears to break down in the macroscopic realm.
Planets, stars, and even the universe itself don’t exhibit such superpositions, creating a significant challenge in understanding how the universe transitions from quantum to classical behavior.
At the heart of this enigma is the question: how does the universe, if fundamentally quantum, adhere to classical laws like general relativity? This puzzle has led to groundbreaking work by researchers such as Matteo Carlesso and his colleagues at the University of Trieste.
Many experts are expecting big advance in quantum computing in 2025, but what is a quantum chip and how does it work?