Toggle light / dark theme

At times, the reactions do not produce the intended results, and this is where simulations are used to understand what might have caused the anomalous behavior. Chemistry students are often tasked with running these simulations to learn to think critically and make sense of discoveries.

As the complexity of the process increases, more advanced computing infrastructure is required to carry out these simulations. To understand these reactions at a quantum level, theoretical chemists even use specialized software packages to streamline their research and automate the simulation process. AutoSolvateWeb is just a chatbot but can help even non-experts achieve this level of competence.

AutoSolvateWeb helps compute the dissolving of a chemical, referred to as a solute, into a substance called a solvent. The resultant solution is called the solvate, hence the name. While theoretical chemists use computation software to convert this into simulations that look much like 3D movies, AutoSolvateWeb can achieve the same output through a chatbot-like interface with the user.

Magnesium is a common chemical element, an alkaline earth metal, which is highly chemically reactive and is very light (even lighter than aluminum). Magnesium is abundant in plants and minerals and plays a role in human physiology and metabolism. In the cosmos, it is produced by large aging stars.

Among its physical properties, while it is a good conductor of electricity, magnesium is not known to be a superconductor. Superconductors are particularly promising materials with the potential to revolutionize , , and quantum computing, and are defined by their ability to conduct electricity without resistance below a certain critical temperature.

Recently, with my colleague Giovanni Ummarino from Turin Polytechnic, I have started challenging the textbook paradigm that states only certain elements in the periodic table can be superconductors. In particular, my colleague and I have shown that the phenomenon of can turn non-superconducting elements into superconductors. Our research is published in Condensed Matter.

A newly developed framework for quantifying uncertainties enhances the predictive power of analog quantum simulations. Simulating quantum many-body systems is a major objective in nuclear and high-energy physics. These systems involve large numbers of interacting particles governed by the laws of

In their ongoing efforts to push the boundaries of quantum possibilities, physicists at WashU have created a new type of “time crystal,” a novel phase of matter that defies common perceptions of motion and time. The WashU research team includes Kater Murch, the Charles M. Hohenberg Professor of Physics Assistant Professor, Chong Zu, assistant professor of physics, and Zu’s graduate students Guanghui He, Ruotian “Reginald” Gong, Changyu Yao, and Zhongyuan Liu. Other authors are Bingtian Ye from MIT and Harvard’s Norman Yao.

Until now, creating quantum superpositions of ultra-cold atoms has been a real headache, too slow to be realistic in the laboratory. Researchers at the University of Liège have now developed an innovative new approach combining geometry and “quantum control,” which drastically speeds up the process, paving the way for practical applications in quantum technologies.

The paper is published in the journal Physical Review A.

Imagine being in a supermarket with a cart filled to the brim. The challenge: get to the checkout before the others, without dropping your products on the corners. The solution? Choose a route with as few corners as possible to go faster without slowing down. That’s exactly what Simon Dengis, a doctoral student at the University of Liège, has managed to do, but in the world of quantum physics.

The effects of quantum mechanics—the laws of physics that apply at exceedingly small scales—are extremely sensitive to disturbances. This is why quantum computers must be held at temperatures colder than outer space, and only very, very small objects, such as atoms and molecules, generally display quantum properties.

By quantum standards, are quite hostile environments: they’re warm and chaotic, and even their fundamental components—such as cells—are considered very large.

But a group of theoretical and experimental researchers has discovered a distinctly quantum effect in biology that survives these difficult conditions and may also present a way for the brain to protect itself from like Alzheimer’s.