In the context of quantum physics, the term “duality” refers to transformations that link apparently distinct physical theories, often unveiling hidden symmetries. Some recent studies have been aimed at understanding and implementing duality transformations, as this could aid the study of quantum states and symmetry-protected phenomena.
Researchers at the University of Cambridge, Ghent University, Institut des Hautes Études Scientifiques and the University of Sydney recently demonstrated the implementation of dualities in symmetric 1-dimensional (1D) quantum lattice models, outlining a method to turn duality operators into unitary linear-depth quantum circuits.
Their paper, published in Physical Review Letters, is part of a larger research effort aimed at better understanding symmetries and dualities in quantum lattice models.