Toggle light / dark theme

Quantum statistical approach quiets big, noisy data

Big data has gotten too big. Now, a research team with statisticians from Cornell has developed a data representation method inspired by quantum mechanics that handles large data sets more efficiently than traditional methods by simplifying them and filtering out noise.

This method could spur innovation in data-rich but statistically intimidating fields, like and epigenetics, where traditional data methods have thus far proved insufficient.

The paper is published in the journal Scientific Reports.

DARPA adds 18 companies to spooky science Quantum Benchmarking Initiative

“No two ways about it,” Altepeter told Breaking Defense today. “The number of companies that we’re announcing is a surprise to me. I did not expect we would get this many.”

For the winning teams, the value of QBI is not just the money. Indeed, first-round grants like those being announced today have typically been under $1 million — small change not just for the Pentagon but for tech firms and venture capitalists already investing billions into quantum ventures. We suggested everybody apply for a million, [but] some people came in and said they were going to do it for less, Altepeter said.

The unique value of a QBI award is that it gives the winning companies access to a DARPA-led team of quantum experts, pulled from both US government labs, including the famous Los Alamos, and federally funded research institutions. Their job is to act as independent testers, fresh eyes, and devil’s advocates, rigorously scrutinizing each participant’s quantum strategy.

Scientists discover “Half-Ice, Half-Fire” — A new exotic phase of matter

Discovering and controlling exotic physical states is key in condensed matter physics and materials science. It has the potential to drive advancements in quantum computing and spintronics.

- Advertisement -

While studying a ferrimagnet model, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory uncovered a new phase of matter called “half-ice, half-fire.” This state is a twin to the “half-fire, half-ice” phase discovered in 2016.

Scientists unveil new way to electrically control spin for ultra-compact devices using altermagnetic quantum materials

Spintronics, an emerging field of technology, exploits the spin of electrons rather than their charge to process and store information. Spintronics could lead to faster, more power-efficient computers and memory devices. However, most spintronic systems require magnetic fields to control spin, which is challenging in ultracompact device integration due to unwanted interference between components. This new research provides a way to overcome this limitation.

As published in Materials Horizons, a research team led by the Singapore University of Technology and Design (SUTD) has introduced a novel method to control electron spin using only an . This could pave the way for the future development of ultra-compact, energy-efficient spintronic devices.

Their findings demonstrate how an emerging type of magnetic material, an altermagnetic bilayer, can host a novel mechanism called layer-spin locking, thus enabling all-electrical manipulation of spin currents at room temperature.

Hidden side channels in quantum sources could compromise secure communication

A team of researchers from University of Toronto Engineering has discovered hidden multi-dimensional side channels in existing quantum communication protocols.

The new side channels arise in quantum sources, which are the devices that generate the —typically photons—used to send secure messages. The finding could have important implications for quantum security.

“What makes quantum communication more secure than classical communication is that it makes use of a property of quantum mechanics known as conjugate states,” says Ph.D. student Amita Gnanapandithan, lead author on a paper published in Physical Review Letters.

Inside the Race to Build the Most Precise Clock in the Universe

A revolutionary timekeeping breakthrough could be on the horizon as scientists explore the thorium-229 nuclear optical clock, an innovation that may surpass today’s atomic clocks.

By manipulating nuclear quantum states with lasers, researchers are pushing the boundaries of precision and stability in time measurement. Though the journey has spanned decades and major technical hurdles remain, recent experimental milestones have brought this futuristic clock closer to reality. If successful, it could reshape our understanding of time and the universe itself.

Pushing the Limits of Timekeeping.

/* */