Toggle light / dark theme

Scientists simulate ‘baby’ wormhole without rupturing space and time

Researchers have announced a groundbreaking experiment that simulated a traversable wormhole using a quantum computer. While no physical rupture in space-time was created, the study offers a significant step toward understanding Einstein-Rosen bridges, theoretical constructs first described by Albert Einstein and Nathan Rosen. Published in the journal Nature, the findings represent a promising avenue for probing quantum gravity experimentally.

A Glimpse of Wormhole Dynamics

The experiment, conducted on Google’s Sycamore quantum processor, involved simulating two minuscule black holes connected by a tunnel-like space-time structure. A quantum message was transmitted between these points, and researchers observed behaviors consistent with wormhole-like dynamics. Study co-author Joseph Lykken, a physicist at Fermilab, remarked, “It looks like a duck, walks like a duck, and quacks like a duck,” indicating the simulation closely mimicked a theoretical wormhole.

Hot Schrödinger cat states created

Quantum states can only be prepared and observed under highly controlled conditions. A research team from Innsbruck, Austria, has now succeeded in creating so-called hot Schrödinger cat states in a superconducting microwave resonator. The study, published in Science Advances, shows that quantum phenomena can also be observed and used in less perfect, warmer conditions.

Schrödinger cat states are a fascinating phenomenon in in which a quantum object exists simultaneously in two different states. In Erwin Schrödinger’s , it is a cat that is alive and dead at the same time.

In real experiments, such simultaneity has been seen in the locations of atoms and molecules and in the oscillations of electromagnetic resonators.

CERN Is Secretly Collapsing Quantum Fields to Alter Local Gravity

Discover how CERN’s research into quantum fields could revolutionize our understanding of gravity! This deep dive explores the theoretical possibilities of manipulating quantum fields and their potential connection to gravitational forces. From Einstein’s predictions to cutting-edge experiments at the Large Hadron Collider, we examine what’s really happening at the frontier of physics research.

Learn how quantum gravity research could potentially transform:

Space travel and propulsion systems 🚀

Revolutionary energy production ⚡

Medical applications and treatments 🏥

Infrared heavy-metal-free quantum dots deliver sensitive and fast sensors for eye-safe LIDAR applications

The frequency regime lying in the shortwave infrared (SWIR) has very unique properties that make it ideal for several applications, such as being less affected by atmospheric scattering as well as being “eye-safe.” These include Light Detection and Ranging (LIDAR), a method for determining ranges and distances using lasers, space localization and mapping, adverse weather imaging for surveillance and automotive safety, environmental monitoring, and many others.

However, SWIR light is currently confined to niche areas, like scientific instrumentation and military use, mainly because SWIR photodetectors rely on expensive and difficult-to-manufacture materials. In the past few years, —solution-processed semiconducting nanocrystals—have emerged as an alternative for mainstream consumer electronics.

While toxic heavy-metals (like lead or mercury) have typically been used, quantum dots can also be made with environmentally friendly materials such as silver telluride (Ag2Te). In fact, silver telluride colloidal quantum dots show device performance comparable to their toxic counterparts. But they are still in their infancy, and several challenges must be addressed before they can be used in practical applications.

Theoretical physicists unveil ‘supermazes’ to decode black-hole microstructure

A team of physicists have discovered a new approach that redefines the conception of a black hole by mapping out their detailed structure, as shown in a research study recently published in Journal of High Energy Physics.

The study details new theoretical structures called “supermazes” that offer a more universal picture of to the field of theoretical physics. Based in , supermazes are pivotal to understanding the structure of black holes on a microscopic level.

“General relativity is a powerful theory for describing the large-scale structure of black holes, but it is a very, very blunt instrument for describing black-hole microstructure,” said Nicholas Warner, co-author of the study and professor of physics, astronomy and mathematics at the USC Dornsife College of Letters, Arts and Sciences. In a framework of theories extending beyond Einstein’s equations, supermazes provide a detailed portrait of the microscopic structure of brane black holes.

/* */