Toggle light / dark theme

The owner of a cocktail bar in the UK has turned to physics in an attempt to force his customers to actually talk to other instead of just staring at social media all night.

Steve Tyler, who owns the Gin Tub in East Sussex, has built his very own Faraday cage around the establishment to block mobile phone signals from entering the building.

It’s a pretty ingenious (but controversial) move that involves installing metal mesh in the walls and ceiling of the bar to essentially filter out electromagnetic signals before they enter the building.

Gravitational-wave researchers at the University of Birmingham have developed a new model that promises to yield fresh insights into the structure and composition of neutron stars.

The model shows that vibrations, or oscillations, inside the stars can be directly measured from the gravitational-wave signal alone. This is because neutron stars will become deformed under the influence of tidal forces, causing them to oscillate at characteristic frequencies, and these encode unique information about the star in the gravitational-wave signal.

This makes asteroseismology — the study of stellar oscillations — with gravitational waves from colliding neutron stars a promising new tool to probe the elusive nature of extremely dense nuclear matter.

In 2015 Francesco Greco, head of the Laboratory of Applied Materials for Printed and Soft electronics (LAMPSe) at the Institute of Solid State Physics at Graz University of Technology, developed so-called “tattoo electrodes” together with Italian scientists.

These are conductive polymers that are printed using an inkjet printer on standard tattoo paper and then stuck to the skin like transfers to measure heart or muscle activity.

This type of electrode, optimized in 2018, opened up completely new paths in electrophysiological examinations, such as electrocardiography (ECG) or electromyography (EMG). Thanks to a thickness of 700 to 800 nanometres — that is about 100 times thinner than a human hair — the tattoos adapt to uneven skin and are hardly noticeable on the body.

An element which could hold the key to the long-standing mystery around why there is much more matter than antimatter in our Universe has been discovered by a University of the West of Scotland (UWS)-led team of physicists.

The UWS and University of Strathclyde academics have discovered, in research published in the journal Nature Physics, that one of the isotopes of the element thorium possesses the most pear-shaped nucleus yet to be discovered. Nuclei similar to thorium-228 may now be able to be used to perform new tests to try find the answer to the mystery surrounding matter and antimatter.

UWS’s Dr. David O’Donnell, who led the project, said: Our research shows that, with good ideas, world-leading nuclear physics experiments can be performed in university laboratories.

Real time photorealistic graphics, at home, are just about here. It’s been a dream for almost 50 years. Pretty amazing how close we are.


Unreal Engine 5 empowers artists to achieve unprecedented levels of detail and interactivity, and brings these capabilities within practical reach of teams of all sizes through highly productive tools and content libraries.

Join Technical Director of Graphics Brian Karis and Special Projects Art Director Jerome Platteaux (filmed in March 2020) for an in-depth look at “Lumen in the Land of Nanite” — a real-time demonstration running live on PlayStation 5 showcasing two new core technologies that will debut in UE5: Nanite virtualized micropolygon geometry, which frees artists to create as much geometric detail as the eye can see, and Lumen, a fully dynamic global illumination solution that immediately reacts to scene and light changes.

Results from physicists in Bochum have challenged the Standard Model of Cosmology. Infrared data, which have recently been included in the analysis, could be decisive.

Bochum cosmologists headed by Professor Hendrik Hildebrandt have gained new insights into the density and structure of matter in the Universe. Several years ago, Hildebrandt had already been involved in a research consortium that had pointed out discrepancies in the data between different groups. The values determined for matter density and structure differed depending on the measurement method. A new analysis, which included additional infrared data, made the differences stand out even more. They could indicate that this is the flaw in the Standard Model of Cosmology.

Rubin, the science magazine of Ruhr-Universität Bochum, has published a report on Hendrik Hildebrandt’s research. The latest analysis of the research consortium, called Kilo-Degree Survey, was published in the journal Astronomy and Astrophysics in January 2020.

James Woodward Space Studies Institute, Inc.

We propose to study the implementation of an innovative thrust producing technology for use in NASA missions involving in space main propulsion. Mach Effect Gravity Assist (MEGA) drive propulsion is based on peer-reviewed, technically credible physics. Mach effects are transient variations in the rest masses of objects that simultaneously experience accelerations and internal energy changes. They are predicted by standard physics where Mach’s principle applies as discussed in peer- reviewed papers spanning 20 years and a recent book, Making Starships and Stargates: the Science of Interstellar Transport and Absurdly Benign Wormholes published in 2013 by Springer-Verlag.

In Phase I we achieved the following:

Motion picture animation and video games are impressively lifelike nowadays, capturing a wisp of hair falling across a heroine’s eyes or a canvas sail snapping crisply in the wind. Collaborators from the University of California, Los Angeles (UCLA) and Carnegie Mellon University have adapted this sophisticated computer graphics technology to simulate the movements of soft, limbed robots for the first time.

Star Trek fans get hyped as scientists at NASA’s Johnson Space Center have just unveiled a design for a warp drive ship. NASA scientist and Advanced Propulsion Team Lead Harold White revealed that he was investigating if a warp drive ship could travel faster than light and if so, how can we build one.

enterpriseship1[Image Source: Mark Rademaker]

In 1994, physicist Miguel Alcubierre proposed a method of warping space-time in his paper titled, “The Warp Drive: Hyper-Fast Travel Within General Relativity,” The idea is not to propel the ship faster than light, but to expand space time behind it, which subsequently would contract space time at the front of the ship. This decreases the time it takes to travel a distance enormously and the method is said to be valid within Einsten’s General Relativity.

A team of research physicists at Princeton University may have found a new way to control fusion reactions inside doughnut-shaped tokamak reactors — an incremental step towards making fusion energy, the ‘holy grail of energy production’, a reality.

Many fusion reactors today use light elements in the form of plasma as fuel. The problem is that this elemental plasma is extremely hot — practically as hot as the Sun — and extremely unpredictable and difficult to control.

But there may be a way to force the plasma into doing what we want more predictably and efficiently, as detailed in a new theoretical paper published in the journal Physics of Plasmas.