Toggle light / dark theme

Share on Facebook: http://on.fb.me/13K5GUw.

What if you could fax someone a real, three-dimensional object? The solution might come in the form of programmable matter — a material that takes on predetermined shapes and can change its configuration on demand. We’re already seeing early prototypes coming from Carnegie Mellon and Intel in the form of “claytronics.” So what’s in store for this technology, and why should we be excited about it?

If you had a vat of claytronic atoms in front of you, what’s the first thing you’d build with it? Let us know in the comments below!

https://www.youtube.com/subscription_center?add_user=fwthinking.

For the audio podcast, blog and more, visit the Fw: Thinking website:
http://www.fwthinking.com.

Fw: Thinking on Twitter: http://www.twitter.com/fwthinking.

Detecting dark matter particles and understanding their underlying physics is a long-standing research goal for many researchers worldwide. Dark matter searches have been aimed at detecting different possible signals that could be associated with the presence of these elusive particles or with their interaction with regular matter.

A promising technology for conducting dark matter searches is the SENSEI (Sub-Electron Noise Skipper-CCD experimental instrument) detector, a highly sensitive imaging sensor located at the SNOLAB research facility in Canada.

The research group analyzing data collected by this detector, dubbed the SENSEI collaboration, have published the results of their first search for sub-GeV dark matter at SNOLAB in the journal Physical Review Letters.

Detecting dark matter, the elusive type of matter predicted to account for most of the universe’s mass, has so far proved to be very challenging. While physicists have not yet been able to determine what exactly this matter consists of, various large-scale experiments worldwide have been trying to detect different theoretical dark matter particles.

One of these candidates is so-called light dark matter (LDM), particles with low masses below a few giga-electron volts (GeV/c2). Theories suggest that these particles could weakly interact with ordinary matter, yet the weakness of these interactions could make them difficult to detect.

The NEON (Neutrino Elastic Scattering Observation with Nal) collaboration, a group of researchers analyzing data collected by the NEON detector at the Hanbit nuclear reactor in South Korea, have published the results of their first direct search for LDM.

Cornell scientists have developed a novel technique to transform symmetrical semiconductor particles into intricately twisted, spiral structures—or “chiral” materials—producing films with extraordinary light-bending properties.

The discovery, detailed in a paper in the journal Science, could revolutionize technologies that rely on controlling light polarization, such as displays, sensors and optical communications devices.

Chiral materials are special because they can twist light. One way to create them is through exciton-coupling, where light excites nanomaterials to form excitons that interact and share energy with each other. Historically, exciton-coupled chiral materials were made from organic, carbon-based molecules. Creating them from inorganic semiconductors, prized for their stability and tunable optical properties, has proven exceptionally challenging due to the needed over nanomaterial interactions.

Skyrmions are nanometer-to micrometer-sized magnetic whirls that exhibit particle-like properties and can be moved efficiently by electrical currents. These properties make skyrmions an excellent system for new types of data storage or computers. However, for the optimization of such devices, it is usually too computationally expensive to simulate the complicated internal structure of the skyrmions.

One possible approach is the efficient simulation of these magnetic spin structures as particles, similar to the simulation of molecules in biophysics. Until now, however, there has been no conversion between time and experimental real time.

A team of physicists and engineers at the University of Colorado Boulder has discovered a new way to measure the orientation of magnetic fields using what may be the tiniest compasses around—atoms.

The group’s findings could one day lead to a host of new quantum sensors, from devices that map out the activity of the human brain to others that could help airplanes navigate the globe. The new study, published in the journal Optica, stems from a collaboration between physicist Cindy Regal and quantum engineer Svenja Knappe.

It reveals the versatility of atoms trapped as vapors, said Regal, professor of physics and fellow at JILA, a joint research institute between CU Boulder and the National Institute of Standards and Technology (NIST).

The role of electrons and their negative charge in electric current is well established. Electrons also exhibit other intrinsic properties that are associated, for example, with considerable potential for enhancing data storage devices: the electron’s spin or magnetic moment.

To date, however, the selection of specific spins has been challenging. It has been difficult to single out only those electrons with an up-direction of spin, for example. One way of doing this would be to pass a current through a ferromagnet, such as iron. This would result in the generation of a current in which the aligns with the direction of the magnetic field.

The alternative option of inducing a current in chiral molecules, i.e., molecules that have no superimposable mirror images, such as helix structures, has been discussed over the past decade. The result is spin polarization of approximately 60–70%, a level similar to that achieved in ferromagnetic materials. However, this approach remains a subject of ongoing debate and research.

What exists at the core of a black hole? A research team led by Enrico Rinaldi, a physicist at the University of Michigan, has leveraged quantum computing and machine learning to analyze the quantum state of a matrix model, providing new insights into the nature of black holes.

The study builds on the holographic principle, which suggests that the fundamental theories of particle physics and gravity are mathematically equivalent, despite being formulated in different dimensions.

Two prevailing theories describe black holes from different dimensional perspectives. In one framework, gravity operates within the three-dimensional geometry of the black hole. In contrast, particle physics is confined to the two-dimensional surface, resembling a flat disk. This duality highlights a key distinction between the two models while reinforcing their interconnected nature.

BIG Projects To Solve Pressing Issues In Science — Dr. Christopher Stubbs, Ph.D. — Professor of Physics and Astronomy, Harvard University.


Dr. Christopher Stubbs, Ph.D. is the Samuel C. Moncher Professor of Physics and Astronomy, and has recently served as the Dean of Science in the Faculty of Arts and Sciences, at Harvard University (https://astronomy.fas.harvard.edu/peo

Dr. Stubbs is an experimental physicist working at the interface between particle physics, cosmology and gravitation. His interests include experimental tests of the foundations of gravitational physics, searches for dark matter, characterizing the dark energy, and observational cosmology.

Dr. Stubbs was a member of one of the two teams that first discovered dark energy by using supernovae to map out the history of cosmic expansion.

Dr. Stubbs is currently heavily engaged in the construction of the Large Synoptic Survey Telescope (LSST), for which he was the inaugural project scientist. He founded the APOLLO collaboration that is using lunar laser ranging and the Earth-Moon-Sun system to probe for novel gravitational effects that may result from physics beyond the standard model.