Menu

Blog

Archive for the ‘particle physics’ category: Page 296

Sep 21, 2020

NASA Found Another Way Into Nuclear Fusion

Posted by in categories: nuclear energy, particle physics, space

O,.o.


NASA has unlocked nuclear fusion on a tiny scale, with a phenomenon called lattice confinement fusion that takes place in the narrow channels between atoms. In the reaction, the common nuclear fuel deuterium gets trapped in the “empty” atomic space in a solid metal. What results is a Goldilocks effect that’s neither supercooled nor superheated, but where atoms reach fusion-level energy.

Continue reading “NASA Found Another Way Into Nuclear Fusion” »

Sep 21, 2020

The Universal Mind Revealed as a Multi-Layered Quantum Neural Network

Posted by in categories: mathematics, particle physics, quantum physics, robotics/AI

In the sixties of the previous century, the science of Cybernetics emerged, which its founder Norbert Wiener defined as “the scientific study of control and communication in the animal and the machine.” Whereas the cyberneticists perhaps saw everything in the organic world too much as a machine type of regulatory network, the paradigm swapped to its mirror image, wherein everything in the natural world became seen as an organic neural network. Indeed, self-regulating networks appear to be ubiquitous: From the subatomic organization of atoms to the atomic organization of molecules, macromolecules, cells and organisms, everywhere the equivalent of neural networks appears to be present.

#EvolutionaryCybernetics #CyberneticTheoryofMind #PhilosophyofMind #QuantumTheory #cybernetics #evolution #consciousness

Continue reading “The Universal Mind Revealed as a Multi-Layered Quantum Neural Network” »

Sep 21, 2020

A Quantum Molecular Assembler

Posted by in categories: chemistry, computing, particle physics, quantum physics

Researchers have created a molecule in a single, precisely characterized quantum state by merging two carefully prepared atoms.

Researchers have demonstrated a quantum molecular assembler—a device that takes individual atoms as inputs and merges them into a molecule in a desired quantum state. The team used lasers to trap and cool one sodium (Na) atom and one cesium (Cs) atom, bring them together, and merge them into an NaCs molecule in a specific quantum state. Such a quantum-controlled molecule is a promising building block for quantum computers and could help researchers study the quantum details of chemical reactions.

Sep 21, 2020

Astronomers Measure a 1-billion Tesla Magnetic Field on the Surface of a Neutron Star

Posted by in categories: cosmology, particle physics

We recently observed the strongest magnetic field ever recorded in the Universe. The record-breaking field was discovered at the surface of a neutron star called GRO J1008-57 with a magnetic field strength of approximately 1 BILLION Tesla. For comparison, the Earth’s magnetic field clocks in at about 1/20,000 of a Tesla – tens of trillions of times weaker than you’d experience on this neutron star…and that is a good thing for your general health and wellbeing.

Neutron stars are the “dead cores” of once massive stars which have ended their lives as supernova. These stars exhausted their supply of hydrogen fuel in their core and a power balance between the internal energy of the star surging outward, and the star’s own massive gravity crushing inward, is cataclysmically unbalanced – gravity wins. The star collapses in on itself. The outer layers fall onto the core crushing it into the densest object we know of in the Universe – a neutron star. Even atoms are crushed. Negatively charged electrons are forced into the atomic nuclei meeting their positive proton counterparts creating more neutrons. When the core can be crushed no further, the outer remaining material of the star rebounds back into space in a massive explosion – a supernova.

Sep 20, 2020

A Strange New Magnetoelectric Effect Has Been Discovered in a Symmetrical Crystal

Posted by in category: particle physics

Magnetism and electricity are linked together in many weird and wonderful ways throughout science, including the fascinating magnetoelectric effect noticeable in some crystals – where the electrical properties of a crystal can be influenced by a magnetic field, and vice versa.

Now things have gotten even weirder, because scientists have discovered a brand new magnetoelectric effect in a symmetrical crystal – and it shouldn’t be possible.

The effect was found in a specific type of crystal called a langasite, which is made up of lanthanum, gallium, silicon and oxygen, plus holmium atoms.

Sep 19, 2020

Physicists May Have The First Experimental Evidence of a New Type of Dark Boson

Posted by in categories: cosmology, particle physics

Two experiments hunting for a whisper of a particle that prevents whole galaxies from flying apart recently published some contradictory results. One came up empty handed, while the other gives us every reason to keep on searching.

Dark bosons are dark matter candidates based on force-carrying particles that don’t really pack much force.

Unlike the bosons we’re more familiar with, such as the photons that bind molecules and the gluons that hold atomic nuclei together, an exchange of dark bosons would barely affect their immediate surroundings.

Sep 18, 2020

The observation of Bloch ferromagnetism in composite fermions

Posted by in categories: particle physics, quantum physics

Composite fermions are exotic quasi-particles found in interacting 2-D fermion systems at relatively large perpendicular magnetic fields. These quasi-particles, which are composed of an electron and two magnetic flux quanta, have often been used to describe a physical phenomenon known as the fractional quantum Hall effect.

Researchers at Princeton University and Pennsylvania State University recently used composite to test a theory introduced by physicist Felix Bloch almost a century ago, suggesting that at very low densities, a paramagnetic Fermi “sea” of electrons should spontaneously transition to a fully magnetized state, which is now referred to as Bloch ferromagnetism. Their paper, published in Nature Physics, provides evidence of an abrupt transition to full magnetization that is closely aligned with the state theorized by Bloch.

“Composite fermions are truly remarkable,” Mansour Shayegan, professor of Electrical Engineering at Princeton University and one of the researchers who carried out the study, told Phys.org. “They are born of interaction and magnetic flux, and yet they map such a complex system to a simple collection of quasi-particles that to a large degree behave as non-interacting and also behave as if they don’t feel the large magnetic field. One of their most interesting properties is their spin polarization.”

Sep 18, 2020

Local heating of radiation belt electrons to ultra-relativistic energies

Posted by in categories: particle physics, space

Figures 4 and 5 effectively demonstrate that local acceleration is capable of heating electrons to ~7 MeV as the phase space density profiles show signatures of local acceleration during both of the geomagnetic storms considered. The phase space density enhancements for higher energies followed the enhancements at lower energies. In Supplementary Note 8, additional analysis establishes that locally growing peaks are also observed for lower values of K, corresponding to radiation belt electrons confined closer to the equator. Furthermore, as the values of K and L* are dependent on the magnetic field model chosen, results using an additional two field models are also presented (see Supplementary Note 9) and, once again, growing peaks are observed in the radial phase space density profile. Our results demonstrate that local acceleration had a significant effect on radiation belt particles during both of the storms in October 2012, acting on electrons up to 7 MeV. In the radiation belt region, local acceleration introduces radial gradients in phase space density and so is always accompanied by both outwards and inwards radial diffusion. Locally heating electrons to ~7 MeV provides a very high energy “source population” for inwards radial diffusion and could therefore help explain the occurrence of ~10 MeV electrons in April–May 201716.

A recent study by Zhao et al.15, considered the acceleration of ultra-relativistic electrons via a statistical analysis of events during the Van Allen Probe era. The results were consistent with a two-step acceleration process, where locally heated electrons at large L*, beyond the Van Allen Probes apogee, are radially diffused inwards to reach energies of 7 MeV in the outer radiation belt. While the combination of local acceleration and radial diffusion produces 7 MeV enhancements15, the Van Allen Probe observations for the two storms shown in this study demonstrate that local acceleration can also act directly up to 7 MeV energies. The local energization mechanism responsible for generating 7 MeV electrons in the heart of the outer radiation belt, be that acceleration by chorus waves or some other process, presents an interesting focus for future research. Longer term analysis and statistical studies can be used to better understand the conditions leading to acceleration. Datasets formed via data-assimilation techniques may be useful for this purpose. Long term observations of the ultra-relativistic component of Earth’s radiation belts demonstrate that ≥7 MeV electrons are a relatively rare phenomenon, occurring far less frequently than enhancements at 1 or 2 MeV1. It therefore follows that the circumstances leading to multi-MeV enhancements could be unusual, requiring specific conditions. Our results highlight that wave-particle interactions can provide the primary acceleration mechanism for electrons up to ultra-relativistic energies, a finding applicable to magnetized plasmas throughout the solar system.

Sep 17, 2020

Looking Back on The First-Ever Photo of Quantum Entanglement

Posted by in categories: computing, particle physics, quantum physics

O,.o.


This stunning image captured last year by physicists at the University of Glasgow in Scotland is the first-ever photo of quantum entanglement — a phenomenon so strange, physicist Albert Einstein famously described it as ‘spooky action at a distance’.

It might not look like much, but just stop and think about it for a second: this fuzzy grey image was the first time we’d seen the particle interaction that underpins the strange science of quantum mechanics and forms the basis of quantum computing.

Continue reading “Looking Back on The First-Ever Photo of Quantum Entanglement” »

Sep 16, 2020

Alien Technology — Almost Useless!

Posted by in categories: computing, particle physics

Returning to the theme of what might be dubbed “UFO Realism” I would like to address a topic that exercises the minds of a lot of UFO conspiracy theorists, namely, reverse engineered alien technologies.

First, is there any evidence at all that any technology we currently have has any extraterrestrial element? For example, one famous claim by Colonel Corso is that much modern technology was derived from the Roswell Incident. To quote the Wikipedia entry the list includes “…particle beam devices, fiber optics, lasers, integrated circuit chips and Kevlar material”, not to mention the transistor itself.

The initial problem with these claims is twofold.