Menu

Blog

Archive for the ‘particle physics’ category: Page 293

May 27, 2021

Quark-gluon plasma flows like water, according to new study

Posted by in categories: cosmology, particle physics

What does quark-gluon plasma—the hot soup of elementary particles formed a few microseconds after the Big Bang—have in common with tap water? Scientists say it’s the way it flows.

A new study, published today in the journal SciPost Physics, has highlighted the surprising similarities between , the first matter thought to have filled the early Universe, and water that comes from our tap.

The ratio between the viscosity of a , the measure of how runny it is, and its density, decides how it flows. Whilst both the viscosity and density of are about 16 orders of magnitude larger than in water, the researchers found that the ratio between the viscosity and density of the two types of fluids are the same. This suggests that one of the most exotic states of matter known to exist in our universe would flow out of your tap in much the same way as water.

May 27, 2021

This record-breaking camera can zoom in 100 million times

Posted by in categories: electronics, particle physics

Step aside, Nikon P1000, the new king of zoom is here. It’s an electronic microscope, though, but it can zoom in 100 million times and still keep the subject clear. It’s so impressive, in fact, that it earned a spot in the Guinness World Records.

Although electron microscopes allow scientists to see individual atoms, zooming all that far will not result in a sufficiently clear image. It’s due to the aberrations in the lenses which are corrected with special aberration correctors. But the problem is that you can’t stack those correctors forever.

David Muller and Sol Gruner, physics professors of Cornell University, came up with a new approach that they first introduced back in 2018. Their electron microscope achieves high resolution using a high-powered detector and a technique called ptychography. Thanks to this technique, they could capture in sharp detail even particles that measure down to 0.39 ångströms or 0.039 nanometers (one-billionth of a meter).

May 27, 2021

Atoms viewed at highest ever resolution

Posted by in categories: information science, particle physics

Transmission electron microscopy (TEM) is a technique that involves beaming electrons through a specimen to form an image. This enables the generation of significantly higher resolution than traditional optical microscopes. While the latter devices are typically limited to around 1000x magnification due to the resolving power of visible light, TEM can provide zoom capabilities that are orders of magnitude greater – surpassing even a scanning electron microscope (SEM).

In recent years, TEM instruments have begun to reach extraordinary levels of detail. Spatial resolutions are now edging into the realm of individual atoms, measuring less than 0.0000005 millimetres (mm).

However, TEM is prone to lens aberrations and multiple scattering, limiting its use to samples thin enough to let electrons pass through. The process is technically challenging and requires additional tools to perform. In 2018, researchers at Cornell University offered a potential solution. They built a high-powered detector combined with a new algorithm-driven process called ptychography. This achieved a new record for microscopic resolution, tripling the previous state-of-the-art.

May 27, 2021

New quantum material discovered

Posted by in categories: computing, particle physics, quantum physics

## SCIENCE ADVANCES • MAY 24, 2021 # *by Vienna University of Technology*

In everyday life, phase transitions usually have to do with temperature changes--for example, when an ice cube gets warmer and melts. But there are also different kinds of phase transitions, depending on other parameters such as magnetic field. In order to understand the quantum properties of materials, phase transitions are particularly interesting when they occur directly at the absolute zero point of temperature. These transitions are called "quantum phase transitions" or a "quantum critical points."

Such a quantum critical point has now been discovered by an Austrian-American research team in a novel material, and in an unusually pristine form. The properties of this material are now being further investigated.

Continue reading “New quantum material discovered” »

May 26, 2021

Scientists find ultraviolet light may create life-essential chemicals

Posted by in categories: chemistry, mapping, particle physics, space

Circa 2016 o.o!


The theory used to be that hydrocarbons were created in “shocks,” or violent stellar events that cause a lot of turbulence and, with the shock waves, make atoms into ions, which are more likely to combine.

The data from the European Space Agency’s Herschel Space Observatory has since proved that theory wrong. Scientists at Herschel studied the components in the Orion Nebula, mapping the amount, temperature and motions for the carbon-hydrogen molecule (CH), the carbon-hydrogen positive ion (CH+) and their parent molecule: the carbon ion (C+).

Continue reading “Scientists find ultraviolet light may create life-essential chemicals” »

May 26, 2021

In a first, neutrinos were caught interacting at the Large Hadron Collider

Posted by in category: particle physics

Despite the LHC’s fame, all its detectors were oblivious to neutrinos. But not anymore.

May 25, 2021

Probing deeper into origins of cosmic rays

Posted by in categories: information science, particle physics, space travel

Cosmic rays are high-energy atomic particles continually bombarding Earth’s surface at nearly the speed of light. Our planet’s magnetic field shields the surface from most of the radiation generated by these particles. Still, cosmic rays can cause electronic malfunctions and are the leading concern in planning for space missions.

Researchers know cosmic rays originate from the multitude of stars in the Milky Way, including our sun, and other galaxies. The difficulty is tracing the particles to specific sources, because the turbulence of interstellar gas, plasma, and dust causes them to scatter and rescatter in different directions.

In AIP Advances, University of Notre Dame researchers developed a to better understand these and other cosmic ray transport characteristics, with the goal of developing algorithms to enhance existing detection techniques.

May 24, 2021

Record-breaking light has more than a quadrillion electron volts of energy

Posted by in category: particle physics

Hundreds of newly detected gamma rays hint at cosmic environments that accelerate particles to extremes.

May 23, 2021

Could blocking the sun save the planet?

Posted by in categories: chemistry, engineering, particle physics, sustainability

As the need for urgent climate solutions grows, scientists want to put more research into a technology known as solar geoengineering — the idea of chemically altering the atmosphere to reflect sunlight away from Earth.

It is seen as a potential method of cooling the planet and offsetting climate change. But could such a technology curtail a climate catastrophe — or become the cause of it?

Continue reading “Could blocking the sun save the planet?” »

May 23, 2021

Superfluidity seen in a 2D Fermi gas

Posted by in categories: particle physics, quantum physics

Physicists in Germany say they have found definitive evidence for the existence of superfluidity in an extremely cold 2D gas of fermions. Their experiment involved confining a few thousand lithium atoms inside a specially-designed trap, and they say that the finding could help shed light on the role of reduced dimensionality in high-temperature superconductors.

Understanding the mechanisms that allow electrical current to flow without resistance inside cuprate materials at ambient pressure and at temperatures of up to 133 K is one of the biggest outstanding challenges in condensed-matter physics. Although scientists can explain the process behind more conventional, lower-temperature superconductivity, they are still trying to work out how the phenomenon can take place at high temperatures in what are essentially 2D materials (cuprates being made up of layers of copper oxide). Such low-dimensional materials are prone to fluctuations that prevent the long-range coherence thought to be essential for superconductivity.

2D Fermi gases can serve as model systems to try and help clear up this mystery, having strong and tuneable correlations between their constituent fermions that can mimic interactions in superconductors. Macroscopic quantum phenomena such as Bose-Einstein condensation involve large numbers of bosons – particles with integer spin – co-existing in a single quantum state. Fermions, in contrast, have half-integer spin and are subject to the Pauli exclusion principle – which precludes multiple particles sharing quantum states. But fermions can get around this restriction by pairing up and combining their spins.