Toggle light / dark theme

Brain Disease Transmitted By Tick Bites May Be Treatable

Summary: Researchers have identified specific anti-bodies that can have a neutralizing effect on the virus responsible for tick-borne encephalitis. Preliminary response in using the anti-bodies in mice has proven affected in preventing TBE. It is hoped a vaccine candidate for TBE can be developed for humans.

Source: Rockefeller University.

Tick-borne encephalitis is a disease just as nasty as it sounds. Once bitten by an infected tick, some people develop flu-like symptoms that resolve quietly but leave behind rampant neurological disease–brain swelling, memory loss, and cognitive decline. Cases are on the rise in Central Europe and Russia with some 10000 incidents reported each year. Vaccines can provide protection, but only for a limited time. There is no cure.

ADHD and Autism Associated With In-Utero Heavy Metals and Essential Minerals

Abstract

Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children

Prenatal exposure to toxic metals or variations in maternal levels of essential elements during pregnancy may be a risk factor for neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in offspring.

Chronic Sinus Inflammation Appears to Alter Brain Activity

Summary: Researchers link the inflammation associated with chronic sinus infections to alterations in brain activity in networks that govern cognition, external stimuli, and introspection. The findings shed light on why people suffering from sinus infections often report poor concentration and other short-term cognitive problems.

Source: University of Washington.

The millions of people who have chronic sinusitis deal not only with stuffy noses and headaches, they also commonly struggle to focus, and experience depression and other symptoms that implicate the brain’s involvement in their illness.

MIT and UCSF researchers create CRISPR ‘on-off switch’ that controls gene expression without changing DNA

The gene editing system CRISPR-Cas9 makes breaks in DNA strands that are repaired by cells—a process that can be hard to control, resulting in unwanted genetic changes. Researchers at the Massachusetts Institute of Technology and the University of California, San Francisco (UCSF) designed an alternative technology that changes gene expression without damaging DNA, and they believe it could be useful for both research and drug development.

The researchers used their system, dubbed CRISPRoff and CRISPRon, to induce pluripotent stem cells to transform into neurons. They also used it to silence the gene that makes the protein Tau, which has been implicated in Alzheimer’s disease. They described their research in the journal Cell.

The MIT and UCSF researchers started by creating a machine made of a protein and small RNAs that guided it to specific spots on strands of DNA. The machine adds “methyl groups” to genes to silence their expression. The technology can also reverse the process, turning the genes back on by removing the methyl groups.

An Evolutionary Discovery That “Literally Changes the Textbook”

MSU’s expertise in fish biology, genetics helping researchers rewrite evolutionary history and shape future health studies.

The network of nerves connecting our eyes to our brains is sophisticated and researchers have now shown that it evolved much earlier than previously thought, thanks to an unexpected source: the gar fish.

Michigan State University’s Ingo Braasch has helped an international research team show that this connection scheme was already present in ancient fish at least 450 million years ago. That makes it about 100 million years older than previously believed.

Striatal dopamine mediates hallucination-like perception in mice

There has not been enough progress in our understanding of the basic mechanisms underlying psychosis. Studying psychotic disorders in animal models is difficult because the diagnosis relies on self-reported symptoms that can only be assessed in humans. Schmack et al. developed a paradigm to probe and rigorously measure experimentally controlled hallucinations in rodents (see the Perspective by Matamales). Using dopamine-sensor measurements and circuit and pharmacological manipulations, they demonstrated a brain circuit link between excessive dopamine and hallucination-like experience. This could potentially be useful as a translational model of common psychotic symptoms described in various psychiatric disorders. It may also help in the development of new therapeutic approaches based on anatomically selective modulation of dopamine function.

Science, this issue p. see also p. [33][2]

### INTRODUCTION

A Blood Test For Depression and Bipolar Disorder

Summary: A new blood test can distinguish the severity of a person’s depression and their risk for developing severe depression at a later point. The test can also determine if a person is at risk for developing bipolar disorder. Researchers say the blood test can also assist in tailoring individual options for therapeutic interventions.

Source: Indiana University.

Worldwide, 1 in 4 people will suffer from a depressive episode in their lifetime.