Toggle light / dark theme

Wonder Drug Could Provide Protection Against Depression

With 17.3 million adult Americans affected, depression is one of the most prevalent mental disorders in the country. A gloomy or depressed mood that lasts for two weeks or more is considered major depression.

Depression is distinct from common mood swings and brief emotional reactions to problems in daily life. Depression may develop into a serious medical condition, particularly if it is recurring and of moderate to severe intensity. The afflicted individual may experience severe suffering and perform badly at work, in school, and with family. In the worst cases, depression might result in suicide.

Since its introduction in the late 1980s to prevent heart attack and stroke, statins have been hailed as a wonder drug and prescribed to tens of millions of individuals. However, some research has suggested that the medications may still have other benefits, particularly those for mental health. A recent study investigates the impact of statins on the emotional bias, a risk factor for depression. The study appears in Biological Psychiatry and was published by Elsevier.

How Does the Brain Learn?

Summary: A new, open-source model of synaptic plasticity in the neocortex could propel understanding of how learning occurs in the brain.

Source: University of Montreal.

Everyone knows the human brain is extremely complex—but how does it learn, exactly? Well, the answer may be a lot simpler than commonly believed.

The Human Brain Runs Way Hotter Than We Ever Realized, Scientists Find

From the engine in your car to the components in your laptop, mechanical systems tend to heat up when they’re working harder. Now new research has revealed that the same can be said of the brain – and it runs hotter than was previously thought.

Some parts of the deep brain can get up to 40 °C (104 °F), a new study shows, though this varies by sex, time of day, and various other factors. Compare that with the average oral temperature in human bodies, which is typically under 37 °C (98.6 °F).

This isn’t a sign of malfunctioning though, researchers think, and may actually be evidence that the brain is operating healthily. Unusual heat signatures could potentially be used in the future to look for signs of brain damage or disorder.

Collapsing a leading theory for the quantum origin of consciousness

The origin of consciousness is one of the greatest mysteries of science. One proposed solution, first suggested by Nobel Laureate and Oxford mathematician Roger Penrose and anesthesiologist Stuart Hammeroff, at Arizona State University, in Tucson, attributes consciousness to quantum computations in the brain. This in turn hinges on the notion that gravity could play a role in how quantum effects disappear, or “collapse.” But a series of experiments in a lab deep under the Gran Sasso mountains, in Italy, has failed to find evidence in support of a gravity-related quantum collapse model, undermining the feasibility of this explanation for consciousness. The result is reported in the journal Physics of Life Reviews.

“How consciousness arises in the brain is a huge puzzle,” says Catalina Curceanu, a member of the physics think tank, the Foundational Questions Institute, FQXi, and the lead physicist on the experiments at INFN in Frascati, Italy. “There are many competing ideas, but very few can be experimentally tested.”

Quantum physics famously tells us that cats can be alive and dead at the same time, at least in . Yet in practice we never see felines locked in such an unfortunate limbo state. One popular explanation for why not is because the “wavefunction” of a system–its quantum character allowing it to be in two contradictory states simultaneously–is more likely to “collapse” or be destroyed if it is more massive, leaving it in one defined state, either dead or alive, say, but not both at the same time. This model of collapse, related to gravity acting on heavy objects like cats, was invoked by Penrose and Hammeroff when developing their model of consciousness, ‘Orch OR theory’ (the Orchestrated Objective Reduction theory), in the 1990s.

Cartographers of the Brain: Mapping the Connectome

Scientists are attempting to map the wiring of the nearly 100 billion neurons in the human brain. Are we close to uncovering the mysteries of the mind or are we only at the beginning of a new frontier?

PARTICIPANTS: Deanna Barch, Jeff Lichtman, Nim Tottenham, David Van Essen.
MODERATOR: John Hockenberry.
Original program date: JUNE 4, 2017

WATCH THE TRAILER: https://youtu.be/lX5S_1bXUhw.
WATCH THE LIVE Q&A W/ JEFF LICHTMAN: https://youtu.be/h14hcBrqGSg.

Imagine navigating the globe with a map that only sketched out the continents. That’s pretty much how neuroscientists have been operating for decades. But one of the most ambitious programs in all of neuroscience, the Human Connectome Project, has just yielded a “network map” that is shedding light on the intricate connectivity in the brain. Join leading neuroscientists and psychologists as they explore how the connectome promises to revolutionize treatments for psychiatric and neurological disorders, answer profound questions regarding the electrochemical roots of memory and behavior, and clarify the link between our upbringing and brain development.

MORE INFO ABOUT THE PROGRAM AND PARTICIPANTS: https://www.worldsciencefestival.com/programs/wired-life-mapping-connectome/

This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.