Neutrophil-based microrobots accomplish the mission of crossing the blood-brain barrier for targeted drug delivery.
See allHide authors and affiliations.
NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.
Summary: Two key metrics of signal detection theory, perceptual certainty and response bias, correlate with changes in cognitive fatigue.
Source: Kessler Foundation.
A team of New Jersey researchers has shown that changes in perceptual certainty and response bias, two central metrics of signal detection theory (SDT), correlate with changes in cognitive fatigue. They also show that SDT measures change as a function of changes in brain activation.
The team found that feeding mice a high fat diet disrupted the circuit, which led not only to weight gain but also to signs of anxiety and depression on standard behavioral tests.
When the researchers used genetic techniques to restore the normal functioning of nerve receptors in the circuit, this resulted in weight loss and eliminated the animals’ signs of anxiety and depression.
A recent study in mice has found that eating a high fat diet may disrupt a newly discovered neural circuit that affects both mood and appetite.
Researchers at Brown University have created a brain-computer interface (BCI) with 200 electrodes providing 48 megabits per second (Mbit/s) of neural signals.
Buck Institute researchers have discovered and are developing a novel, non-invasive biomarker test that can be used to measure and track performance of senolytics: a class of drugs that selectively eliminate senescent cells. The discovery is expected to play a major role in efforts to develop treatments that would battle a myriad of chronic age-related conditions that range from arthritis to lung disease to Alzheimer’s disease and glaucoma. This biomarker is a unique signaling lipid metabolite, normally exclusively intracellular, but is released when senescent cells are forced to die. This metabolite is detectible in blood and urine, making non-invasive testing possible. With a growing list of senolytic drugs in development, detecting this metabolite via a companion test could verify performance of senolytic candidates.
“The list of age-related diseases definitively linked to cellular senescence keeps growing, as does the number of biotech companies racing to develop drugs to eliminate senescent cells,” said Buck professor Judith Campisi, Ph.D., senior scientist on the study. “While the field has never been more promising, the lack of a simple biomarker to measure and track efficacy of these treatments has been a hindrance to progress. We are excited to bring this new biomarker to the field and look forward to it being used in the clinic.”
The results of this study confirm a direct link, on a molecular level, between the gut microbiome and brain function.
Summary: Consuming high levels of sugar-sweetened beverages early in life may lead to memory problems during adulthood. Researchers found, compared to rats who consumed only water, those who drank sugar-sweetened beverages had difficulties in memory recall associated with the hippocampus. The study also found a link between specific changes in gut bacteria in rats who drank sugary drinks and impaired brain function.
Source: USC
New research shows how drinking sugary beverages early in life may lead to impaired memory in adulthood.
Bipolar disorder affects millions of Americans, causing dramatic swings in mood and, in some people, additional effects such as memory problems.
While bipolar disorder is linked to many genes, each one making small contributions to the disease, scientists don’t know just how those genes ultimately give rise to the disorder’s effects.
However, in new research, scientists at the University of Wisconsin-Madison have found for the first time that disruptions to a particular protein called Akt can lead to the brain changes characteristic of bipolar disorder. The results offer a foundation for research into treating the often-overlooked cognitive impairments of bipolar disorder, such as memory loss, and add to a growing understanding of how the biochemistry of the brain affects health and disease.
Gene editing has shown great promise as a non-heritable way to treat a wide range of conditions, including many genetic diseases and more recently, even COVID-19. But could a version of the CRISPR gene-editing tool also help deliver long-lasting pain relief without the risk of addiction associated with prescription opioid drugs?
In work recently published in the journal Science Translational Medicine, researchers demonstrated in mice that a modified version of the CRISPR system can be used to “turn off” a gene in critical neurons to block the transmission of pain signals [1]. While much more study is needed and the approach is still far from being tested in people, the findings suggest that this new CRISPR-based strategy could form the basis for a whole new way to manage chronic pain.
This novel approach to treating chronic pain occurred to Ana Moreno, the study’s first author, when she was a Ph.D. student in the NIH-supported lab of Prashant Mali, University of California, San Diego. Mali had been studying a wide range of novel gene-and cell-based therapeutics. While reading up on both, Moreno landed on a paper about a mutation in a gene that encodes a pain-enhancing protein in spinal neurons called NaV1.7.
Dr. Shawna Pandya MD, is a scientist-astronaut candidate with Project PoSSUM, physician, aquanaut, speaker, martial artist, advanced diver, skydiver, and pilot-in-training.
Dr. Pandya is also the VP of Immersive Medicine with the virtual reality healthcare company, Luxsonic Technologies, Director of the International Institute of Astronautical Sciences (IIAS)/PoSSUM Space Medicine Group, Chief Instructor of the IIAS/PoSSUM Operational Space Medicine course, Director of Medical Research at Orbital Assembly Construction (a company building the world’s first rotating space station providing the first artificial gravity habitat), clinical lecturer at the University of Alberta, podcast host with the World Extreme Medicine’s WEMCast series, Primary Investigator (PI) for the Shad Canada-Blue Origin student micro-gravity competition, member of the ASCEND 2021 Guiding Coalition, Life Sciences Team Lead for the Association of Spaceflight Professionals, sesional lecturer for the “Technology and the Future of Medicine,” course at the University of Alberta, and Fellow of the Explorers’ Club.
Dr. Pandya also serves as medical advisor to several space, medical and technology companies, including Mission: Space Food, Gennesys and Aquanauta, as well as the Jasper Dark Sky Festival Advisory Committee.
Dr. Pandya holds a Bsc degree in neuroscience from University of Alberta, a MSc in Space Studies from International Space University, an MD from University of Alberta, and a certification in entrepreneurship from the Graduate Studies Program at Singularity University.
New data from Children’s National Hospital shows parental experience with a number of social determinants of health can ultimately impact brain development in utero, something researchers said should suggest future community health intervention among pregnant people. The data, published in JAMA Network Open, specifically found poorer brain development in fetuses among pregnant people with low socioeconomic status (SES), low educational attainment, and limited employment opportunity.
New data from Children’s National Hospital has found that social determinants of health like income, education, and occupation can impact fetal brain development, following that child into life.