Toggle light / dark theme

Why People are Microchipping their Brains — Next-Gen BCI’s: Neurograins

Neurograins might be the future of implantable Brain Computer Interfaces due to their advantages in terms of abilities and safety in terms of implantation. Due to being the smallest Microchips ever made, in addition to being very powerful, they can make very high resolution recordings of brain activity and even stimulate areas in the brain for medical treatments for people suffering from brain disorders.

The field of neuroscience is developing at a rapid pace, which constantly improves on our BCI Technology and enabling more and more treatments and applications for Brain Computer Interface. It’s clear that this is very advanced future technology and who knows, maybe these new Neurograin Brain Computer Interfaces may play a part in it. Or maybe Elon Musk’s Neuralink’s approach will win in the end. People willingly microchipping their brains will be more common in the future.

If you enjoyed this video, please consider rating this video and subscribing to our channel for more frequent uploads. Thank you! smile

TIMESTAMPS:
00:00 The smallest Chips ever made?
01:48 How is it different?
02:47 How this Brain Computer Interface works.
03:51 What can this BCI do?
05:46 The Future of Brain Computer Interfaces.
08:30 Last Words.

#Neurograins #bci #neuralink

New Drug Could Help Stop Depression, Anxiety, Brain Injury, and Cognitive Disorders

The preclinical drug works by inhibiting the kinase Cdk5 which is found in mature neurons. Cdk5 has long been linked to neuropsychiatric and neurodegenerative disorders, but prior inhibitors have largely failed to cross the blood-brain barrier and enter the brain.

A new preclinical drug reported by James Bibb, Ph.D., and colleagues has the potential to combat depression, brain injury, and cognitive disorders. The drug, which is notable for being brain-permeable, works by inhibiting the kinase enzyme Cdk5.

Cdk5 is an important signaling regulator in brain neurons. Over three decades of research, it has been linked to neuropsychiatric and degenerative disorders such as Alzheimer’s.

Researchers use GPUs to evaluate human brain connectivity

A new GPU-based machine learning algorithm developed by researchers at the Indian Institute of Science (IISc) can help scientists better understand and predict connectivity between different regions of the brain.

The algorithm, called Regularized, Accelerated, Linear Fascicle Evaluation, or ReAl-LiFE, can rapidly analyze the enormous amounts of data generated from diffusion Magnetic Resonance Imaging (dMRI) scans of the human brain. Using ReAL-LiFE, the team was able to evaluate dMRI data over 150 times faster than existing state-of-the-art algorithms.

“Tasks that previously took hours to days can be completed within seconds to minutes,” says Devarajan Sridharan, Associate Professor at the Centre for Neuroscience (CNS), IISc, and corresponding author of the study published in the journal Nature Computational Science.

Development of a technology to produce dorsal cortical neurons

Korea Brain Research Institute (KBRI, President Pann Ghill Suh) announced on Mar. 4 that its research team led by principal researcher Yoichi Kosodo has developed a technology to mass produce cerebral cortex neurons utilizing Induced pluripotent Stem Cells (iPS). The research outcome will be published in the March issue of Scientific Reports.

Scientists expect that it will be possible to treat diseases by restoring damaged area in the brain by mass producing neurons utilizing stem cells even though cerebral neurons die if one suffers from such as dementia and Parkinson’s Disease.

In fact, a research team of Kyoto University in Japan conducted clinical test of transplanting neurons made of iPS into the brain of a patient with Parkinson’s disease. In Parkinson’s disease, neurons that generate the neurotransmitter dopamine die, resulting in symptoms such as and tremor in hands and feet. Through the clinical test, the patient was treated with new neurons.

Building better brains—a bioengineered upgrade for organoids

A few years ago, Jürgen Knoblich and his team at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) have pioneered brain organoid technology. They developed a method for cultivating three-dimensional brain-like structures, so called cerebral organoids, in a dish. This discovery has tremendous potential as it could revolutionize drug discovery and disease research. Their lab grown organ-models mimic early human brain development in a surprisingly precise way, allowing for targeted analysis of human neuropsychiatric disorders, that are otherwise not possible. Using this cutting-edge methodology, research teams around the world have already revealed new secrets of human brain formation and its defects that can lead to microcephaly, epilepsy or autism.

In a new study published in Nature Biotechnology, scientists from Cambridge and Vienna present a new method that combines the organoid method with bioengineering. The researchers use special polymer fibers made of a material called PLGA) to generate a floating scaffold that was then covered with human cells. By using this ground-breaking combination of engineering and stem cell culture, the scientists are able to form more elongated organoids that more closely resemble the shape of an actual human embryo. By doing so, the organoids become more consistent and reproducible.

“This study is one of the first attempts to combine organoids with bioengineering. Our new method takes advantage of and combines the unique strengths of each approach, namely the intrinsic self-organization of organoids and the reproducibility afforded by bioengineering. We make use of small microfilaments to guide the shape of the organoids without driving tissue identity, ” explains Madeline Lancaster, group leader at MRC Laboratory of Molecular Biology in Cambridge and first author of the paper.

Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats

Circa 2021 First breakthrough in immortality of the eyes of rats using the inducing of pluripotent stem cells in the eye. Which will eventually lead to immortality of the human eye.


The retina is neural tissue located in the posterior part of the eye and is an extension of the central nervous system (CNS), which has limited regenerative potential once damaged1. Therefore, to maintain homeostasis of the retinal microenvironment and protect itself from harmful stimuli, the retina has a unique structure consisting of inner and outer blood-retinal barriers (BRBs)2,3,4. The outer BRB is mainly composed of retinal pigment epithelial (RPE) cells, which support photoreceptor cells, the primary neurons in the retina, and play a significant role in the pathogenesis of retinal degenerative disorders, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP)5,6,7,8,9. These disorders are commonly characterized by the irreversible loss of photoreceptor cells and RPE cells, and the only fundamental treatment for these retinal degenerative disorders is replacement of damaged or atrophied cells10,11,12. Thus, regenerative treatments, such as stem cell transplantation, are emerging as attractive options for targeting retinal degeneration that was previously considered untreatable13.

RP refers to a set of hereditary retinal degenerative disorders that initially involve photoreceptors and leads to subsequent RPE cell damage; it affects 1 in 4,000 individuals worldwide9. Due to its inherent nature, extensive genetic studies are ongoing, and more than 50 causal genes have been identified14. Among the causal genes, PDE6B is a gene that encodes rod cGMP-phosphodiesterase, which is a critical component of the biochemical light transduction pathway9. Although various molecular and genetic studies have identified the pathomechanisms of RP, attempts to restore vision in patients with RP have failed. To overcome this issue, preclinical stem cell-based studies involving transient dosing or permanent implantation of pluripotent stem cells are being conducted10,11,15,16.

Permanent implantation of retinal stem cells is a promising method and is highly expected to be a potential alternative treatment strategy for replacing damaged retinal cells13,16. Sharma et al.17 manufactured clinical-grade AMD patient stem cell-derived RPE cells using RPE patches of a biodegradable scaffold, and functionally validated the effects of their transplantation. This researchers provided a pipeline for the generation of clinical-grade induced pluripotent stem cell (iPSC)-derived RPE cells, and histologically and functionally validated the efficacy of transplantation, thereby significantly advancing the retinal stem cell transplantation field; however, a single RPE cell transplantation cannot rescue already compromised photoreceptor cells and can be only applied in early stages of retinal degenerative diseases, when there are sufficient functional photoreceptor cells.

Dyslexia Actually Grants Special Powers, Researchers Say

As much as 20 percent of the global population could actually be better at exploration and curiosity, according to a new study published this week.

A team of Cambridge scientists published research in the journal Frontiers of Psychology earlier today that raises the possibility that dyslexia, which affects an estimated one in five people worldwide, could actually help the human species adapt and ensure future success.

“The deficit-centered view of dyslexia isn’t telling the whole story,” lead author Helen Taylor said in a statement accompanying the paper. “This research proposes a new framework to help us better understand the cognitive strengths of people with dyslexia.”