Menu

Blog

Archive for the ‘neuroscience’ category: Page 409

Nov 9, 2022

A new large-scale virtual model of the visual cortex is highly successful in solving visual tasks

Posted by in categories: biological, neuroscience, robotics/AI

Human Brain Project researchers have trained a large-scale model of the primary visual cortex of the mouse to solve visual tasks in a highly robust way. The model provides the basis for a new generation of neural network models. Due to their versatility and energy-efficient processing, these models can contribute to advances in neuromorphic computing.

Modeling the brain can have a massive impact on (AI): Since the brain processes images in a much more energy-efficient way than artificial networks, scientists take inspiration from neuroscience to create neural networks that function similarly to the biological ones to significantly save energy.

In that sense, brain-inspired neural networks are likely to have an impact on future technology, by serving as blueprints for in more energy-efficient neuromorphic hardware. Now, a study by Human Brain Project (HBP) researchers from the Graz University of Technology (Austria) showed how a large data-based model can reproduce a number of the brain’s visual processing capabilities in a versatile and accurate way. The results were published in the journal Science Advances.

Nov 9, 2022

Brainwave-reading implant lets paralyzed man spell out 1,100 words

Posted by in categories: biotech/medical, computing, cyborgs, neuroscience

A paralyzed man who cannot speak or type was able to spell out over 1,000 words using a neuroprosthetic device that translates his brain waves into full sentences, US researchers said Tuesday.

“Anything is possible,” was one of the man’s favorite phrases to spell out, said the first author of a new study on the research, Sean Metzger of the University of California San Francisco (UCSF).

Continue reading “Brainwave-reading implant lets paralyzed man spell out 1,100 words” »

Nov 9, 2022

Monoclonal antibodies preserve stem cells in mouse brains, bring promise for future studies

Posted by in categories: biotech/medical, neuroscience

A new approach to stem cell therapy that uses antibodies instead of traditional immunosuppressant drugs robustly preserves cells in mouse brains and has potential to fast-track trials in humans, a Michigan Medicine study suggests.

For this study, researchers used to suppress the in mice and compared the results to traditional immunosuppression with the medications tacrolimus and mycophenolate mofetil. They tracked implanted human neural stem using luciferase, the protein that makes fireflies glow.

Results published in Clinical and Translational Medicine reveal that suppression with monoclonal enabled long-term survival of human stem cell transplants in mouse brains for at least six to eight months, while the cell grafts did not survive more than two weeks in most animals when using standard immunosuppressant drugs.

Nov 9, 2022

Disruption of mTORC1 rescues neuronal overgrowth and synapse function dysregulated by Pten loss

Posted by in category: neuroscience

). At P7, Ptenflx/flx and Ptenflx/flxRaptorflx/flx animals were co-injected into the dentate gyrus with a retrovirus encoding a fluorophore (GFP) with a downstream Cre, and a control retrovirus with just a fluorophore (mCherry) and no Cre (Figure 3A). Here, the GFP-expressing newborn granule neurons are KOs for their respective flox genes, while mCherry-expressing neurons serve as their in-tissue WT controls. To investigate the role of mTORC1 in development of Pten KO-mediated somal hypertrophy, we quantified soma size of retrovirally infected immunolabeled granule neurons at P28. We observed that Pten KO neurons had significantly greater soma size when compared with their WT control. This increase in soma size was completely rescued in Pten and Raptor double knockout (DKO) neurons (Table S1A and Figures 3B and 3D). We further examined the role of mTORC1 in aberrant migration of Pten KO granule neurons. The Pten KO neurons migrate significantly farther from the hilus along the GCL, when compared with their WT control. This farther migration was completely rescued in Pten and Raptor DKO neurons (Table S1B and Figures 3B and 3E). The dendritic spine density was also found to be significantly increased in Pten KO neurons. This increase in number of spines in middle molecular layer was reduced to WT density in Pten and Raptor DKO neurons (Table S1C and Figures 3C and 3F). Additionally, the decrease in spine head diameter seen in Pten KO neurons was rescued in Pten and Raptor DKO neurons (Table S1D). However, the increased spine length of Pten KO neurons persisted in the Pten and Raptor DKO neurons (Table S1E). These data suggest that Pten loss-mediated neuronal hypertrophy can be rescued by targeting Raptor to disrupt mTORC1.

To examine the role of mTORC1 in the Pten loss-mediated dendritic overgrowth of granule neurons, we reconstructed and quantified retrovirally infected immunolabeled Pten KO granule neurons, as well as Pten and Raptor DKO granule neurons at P28 (Figures 4A and 4B). We observed that Pten KO granule neurons had more elaborate dendritic arbor. Sholl analysis revealed that Pten KO neurons had an increased number of intersections, when compared with WT control neurons. This increase was completely rescued in Pten and Raptor DKO neurons (Table S1F and Figure 4C). The total dendritic length was also increased in Pten KO neurons, which was rescued in Pten and Raptor DKO neurons (Table S1G and Figure 4D). Further analysis revealed that Pten KO neurons have more primary dendrites protruding directly out of the soma, when compared with their WT control. This increase in number of primary dendrites was completely rescued in Pten and Raptor DKO neurons (Table S4A and Figure S2A).

Nov 9, 2022

Biological lasso: Enhanced drug delivery to brain

Posted by in categories: biotech/medical, life extension, neuroscience

In a study recently published in the journal Nature Biomedical Engineering, researchers from Kanazawa University use a method called “lasso-grafting” to design therapeutics with enhanced longevity and brain penetration.

Cell growth and repair are stimulated by biomolecules known as cytokines and growth factors. Unfortunately, delivering adequate concentrations of these molecules to the for treating neurological conditions like Alzheimer’s disease is challenging as they are either cleared out of the blood very quickly or do not penetrate effectively.

A research team led by Kunio Matsumoto and Katsuya Sakai at Kanazawa University in collaboration with Junichi Takagi, Osaka University and Hiroaki Suga, the University of Tokyo has now used a technique called “lasso-grafting” to design molecules that replicate growth factors with longer retention in the body and brain penetration.

Nov 8, 2022

Incredible story of woman who came back to life after being dead for 17 hours

Posted by in categories: biotech/medical, neuroscience

A woman once baffled doctors when she came back to life after being dead for more than 17 hours. Velma Thomas had a heart attack at her home in Virginia in 2008 and was rushed to hospital. While there she had two more heart attacks and was placed on life support — in all, her heart stopped beating three times and she was clinically dead, with no brain activity, for 17 hours.

Nov 8, 2022

Digital Doubles and Second Selves

Posted by in categories: augmented reality, automation, big data, computing, cyborgs, evolution, futurism, information science, innovation, internet, life extension, machine learning, neuroscience, posthumanism, robotics/AI, singularity, software, supercomputing

This time I come to talk about a new concept in this Age of Artificial Intelligence and the already insipid world of Social Networks. Initially, quite a few years ago, I named it “Counterpart” (long before the TV series “Counterpart” and “Black Mirror”, or even the movie “Transcendence”).

It was the essence of the ETER9 Project that was taking shape in my head.

Over the years and also with the evolution of technologies — and of the human being himself —, the concept “Counterpart” has been getting better and, with each passing day, it makes more sense!

Imagine a purely digital receptacle with the basics inside, like that Intermediate Software (BIOS(1)) that computers have between the Hardware and the Operating System. That receptacle waits for you. One way or another, it waits patiently for you, as if waiting for a Soul to come alive in the ether of digital existence.

Continue reading “Digital Doubles and Second Selves” »

Nov 8, 2022

Neuronal Mechanism Involved in the Learning of Maternal Behavior Discovered

Posted by in category: neuroscience

Summary: Female mice who have not been pregnant or given birth show activation in the anterior cingulate cortex when they acquire maternal behaviors after exposure to pups. The findings reveal through repeated exposure to pups, virgin female mice are capable of learning maternal behaviors that resemble those of mothers following birth.

Source: Medical University of Vienna.

Various conditions such as postpartum depression or postpartum psychosis can lead to an alteration in maternal behavior and disrupt the mother-child bonding process.

Nov 8, 2022

People with speech paralysis can now talk using this intelligent spelling device

Posted by in categories: biotech/medical, computing, cyborgs, neuroscience

It gives new meaning to the phrase “speak your mind.

Do you remember how legendary cosmologist Stephen Hawking communicated using his special screen-equipped chair? Well, that was a brain-computer interface (BCI), a device that allows a person to communicate using their brain signals.

Continue reading “People with speech paralysis can now talk using this intelligent spelling device” »

Nov 8, 2022

This deep brain stimulator needs no batteries, only your breath

Posted by in categories: biotech/medical, neuroscience

“This is the first system that combines all the pieces; efficient energy harvesting, energy storage, and the controlled brain stimulator.”

Researchers have devised an ingenious way to power deep brain simulators — Using the person’s breathing movements.

About 150,000 deep brain stimulators are implanted every year. Normally placed under the skin in the chest area with electrodes implanted in the brain, these stimulators are known to help with neurological and psychiatric diseases when traditional treatments fail.

Page 409 of 1,029First406407408409410411412413Last