Menu

Blog

Archive for the ‘neuroscience’ category: Page 412

Sep 13, 2022

Quantum diamond sensor used to measure neuron activity in mouse tissue

Posted by in categories: neuroscience, quantum physics

The activity of neurons has been measured in a slice of mouse tissue using a quantum diamond sensor – and it might one day enable a new type of non-invasive brain scanning.

Sep 13, 2022

A Single Protein Could Unlock Age-Related Vision Loss

Posted by in categories: life extension, neuroscience

Summary: Determining the structure of vitronectin, a protein implicated in age-related macular degeneration and some neurodegenerative disorders, and using pressure to alter the protein shape may help in the development of new treatments for AMD.

Source: Sanford Burnham Prebys.

Research led by Sanford Burnham Prebys professor Francesca Marassi, Ph.D., is helping to reveal the molecular secrets of macular degeneration, which causes almost 90% of all age-related vision loss.

Sep 13, 2022

Brain organoids provide insights into the evolution of the human brain

Posted by in categories: biotech/medical, evolution, neuroscience

Animal studies on great apes have long been banned in Europe for ethical reasons. For the question pursued here, organoids (three-dimensional cell structures a few millimeters in size that are grown in the laboratory) are an alternative to animal experiments. These organoids can be produced from pluripotent stem cells, which then differentiate into specific cell types, such as nerve cells. In this way, the research team was able to produce both chimpanzee brain organoids and human brain organoids. “These brain organoids allowed us to investigate a central question concerning ARHGAP11B,” says Wieland Huttner of the MPI-CBG, one of the three lead authors of the study published in EMBO Reports.

“In a previous study we were able to show that ARHGAP11B can enlarge a primate brain. However, it was previously unclear whether ARHGAP11B had a major or minor role in the evolutionary enlargement of the human neocortex,” says Wieland Huttner. To clarify this, the ARGHAP11B gene was first inserted into brain ventricle-like structures of chimpanzee organoids. Would the ARGHAP11B gene lead to the proliferation of those brain stem cells in the chimpanzee brain that are necessary for the enlargement of the neocortex?

“Our study shows that the gene in chimpanzee organoids causes an increase in relevant brain stem cells and an increase in those neurons that play a crucial role in the extraordinary mental abilities of humans,” said Michael Heide, the study’s lead author, who is head of the Junior Research Group Brain Development and Evolution at the DPZ and employee at the MPI-CBG.

Sep 13, 2022

Synchronous Brain Waves, Correlate of Consciousness

Posted by in category: neuroscience

One of the major current theories of consciousness is that brain oscillations, also called brain waves, correlate with specific mental states. It is the synchronous waves from different regions, that is, those that are beating at the same rate, that are believed to be important for the connection of different brain regions. Brain waves have been observed for more than a hundred years, but it is still not clear exactly what they are and what they have to do with the function of the brain and the mind.

Oscillations in the brain occur because of an interplay between two forces, such as stimulation and inhibition. This dynamic can either come from two different cortical layers or a cortical and subcortical layer. Feedback properties affect the oscillations by either continuing the give and take of the two forces or changing them in various ways. Even with no outside input, the brain creates spontaneous oscillations; a well-known example is the one, connected to the thalamus and cortex, that occurs during sleep. Currently, it is believed that these oscillations help to synthesize and filter the previous day’s memories. While these oscillations are associated with sleep, most other brain oscillations are not clearly correlated with mental states.

Sep 13, 2022

Can we reverse engineer the brain like a computer?

Posted by in categories: asteroid/comet impacts, biotech/medical, computing, existential risks, neuroscience

Circa 2019 face_with_colon_three


By Tyler Benster.

Neuroscientists have a dizzying array of methods to listen in on hundreds or even thousands of neurons in the brain and have even developed tools to manipulate the activity of individual cells. Will this unprecedented access to the brain allow us to finally crack the mystery of how it works? In 2017, Jonas and Kording published a controversial research article, “Could a Neuroscientist Understand a Microprocessor?” that argues maybe not. To make their point, the authors turn to their “model organism” of choice: a MOS 6502 processor as popularized by the Apple I, Commodore 64, and Atari Video Game System. Jonas and Kording argue that for an electrical engineer, a satisfying description of the processor would break it into modules, like an adder or subtractor, and submodules, like the transistor, to form a hierarchy of information processing. They suggest that, while popular methods from neuroscience might reveal interesting structure in the activity of the brain, researchers often use techniques that would fail to reveal a hierarchy of information processing if applied to the (presumably much simpler) computer processor.

Continue reading “Can we reverse engineer the brain like a computer?” »

Sep 12, 2022

Groundbreaking Alzheimer’s Case: Gene APOE3

Posted by in categories: biotech/medical, genetics, neuroscience

An alzheimer’s-proof brain: a groundbreaking case.


In a groundbreaking case researchers from the Massachusetts General Hospital have discovered a gene variant that seems to have disrupted the pathology of Tau Protein. The case of Aliria Rosa Piedrahita de Villegas.

Continue reading “Groundbreaking Alzheimer’s Case: Gene APOE3” »

Sep 12, 2022

Brain–phenotype models fail for individuals who defy sample stereotypes

Posted by in category: neuroscience

Predictive models that relate brain activity to phenotype reliably fail when applied to subgroups of participants who do not fit stereotypical profiles, showing that the utility of a one-size-fits-all modelling approach is limited.

Sep 12, 2022

Does the human brain resemble the Universe?

Posted by in categories: biotech/medical, neuroscience

An astrophysicist at the University of Bologna and a neurosurgeon at the University of Verona compared the network of neuronal cells in the human brain with the cosmic network of galaxies… and surprising similarities emerged.

In their paper published in Frontiers in Physics, Franco Vazza (astrophysicist at the University of Bologna) and Alberto Feletti (neurosurgeon at the University of Verona) investigated the similarities between two of the most challenging and in nature: the cosmic of and the network of neuronal cells in the .

Despite the substantial difference in scale between the two networks (more than 27 orders of magnitude), their , which sits at the crossroads of cosmology and neurosurgery, suggests that diverse physical processes can build structures characterized by similar levels of complexity and self-organization.

Sep 12, 2022

Researchers record for the first time that crows have conscious thoughts

Posted by in categories: evolution, neuroscience

In a recent study, scientists have made an unprecedented discovery: crows are not only clever; they also show consciousness and are aware of the world around them. This means they also have experiences that they feel and remember.

As per the research work published in the journal ‘Science’, researchers have discussed that crows show a primary or sensory consciousness. Such a form of consciousness was previously only found among primates before. This was the first time such a form of consciousness was recorded among a bird. Scientists believe this study will pave the path for researchers to understand better the evolution of awareness among the different living beings and how it affects the brain and thinking capacity among the various organisms.

It is difficult to understand the extent of consciousness, especially concerning birds because they do not speak the way we do, nor do we have sophisticated instruments to understand what goes inside their heads. Consciousness involves the thought process behind self-awareness and awareness of the world around oneself. With a good conscience, an individual often shows problem-solving traits and good decision-making skills – some visible strategies, both at which crows are good.

Sep 12, 2022

Scientists search for new methods to cure neurodegenerative diseases

Posted by in categories: biotech/medical, evolution, food, neuroscience

Most neurons in the human brain are generated from neural stem cells during embryonic development. After birth, a small reservoir of stem cells remains in the brain that keeps on producing new neurons throughout life. However, the question arises as to whether these new neurons really support brain function? And if so, can we improve brain capacity by increasing the number of neurons? The research group of Prof. Federico Calegari at the Center for Regenerative Therapies Dresden (CRTD) of TU Dresden has answered these questions, now published in the EMBO Journal.

In their latest study, the scientists analysed healthy adult mice in which the small reservoir of stem cells was manipulated in order to increase in number. As a result, the number of neurons, generated from these stem cells, also increased. In mice, these neurons mainly populate the brain area responsible for interpreting odours. In fact, olfaction is one to the most powerful senses in mice, fundamental for finding food and escape from predators. As powerful as the sense of smell naturally is in mice, in the following behavioural experiments the scientists found that mice with more neurons were able to distinguish extremely similar odours that normal mice failed to. Hence, this study is fundamental in proving that stem cells can be used to improve brain function.

“Evolution gave mice an extremely sensitive olfactory system. It is amazing that by adding few neurons we could improve something that seemed already close to perfection,” states Prof. Federico Calegari. “This study sets the basis for our research, which now is focused on finding out whether we could apply our strategy as a therapeutic approach in neurodegenerative models.”

Page 412 of 1,004First409410411412413414415416Last