Toggle light / dark theme

Latest insights into after effects of severe COVID-19 on the brain

New steps have been taken towards a better understanding of the immediate and long-term impact of COVID-19 on the brain in the UK’s largest study to date.

Published in Nature Medicine, the study from researchers led by the University of Liverpool alongside King’s College London and the University of Cambridge as part of the COVID-CNS Consortium shows that 12–18 months after hospitalisation due to COVID-19, patients have worse cognitive function than matched control participants. Importantly, these findings correlate with reduced brain volume in key areas on MRI scans as well as evidence of abnormally high levels of brain injury proteins in the blood.

Strikingly, the post-COVID cognitive deficits seen in this study were equivalent to twenty years of normal ageing. It is important to emphasise that these were patients who had experienced COVID, requiring hospitalisation, and these results shouldn’t be too widely generalised to all people with lived experience of COVID. However, the scale of deficit in all the cognitive skills tested, and the links to brain injury in the brain scans and blood tests, provide the clearest evidence to date that COVID can have significant impacts on brain and mind health long after recovery from respiratory problems.

New Tool Quantifies Cancer’s Ability to Shape-Shift

A powerful new analytical tool offers a closer look at how tumor cells “shape-shift” to become more aggressive and untreatable, as shown in a study from researchers at Weill Cornell Medicine and the New York Genome Center.

A tumor cell shape-shifts by changing its cell type or state, thus altering its basic pattern of activity and perhaps even its appearance. This changeability or “plasticity” is a characteristic of cancer that leads to diverse tumor-cell populations and ultimately the emergence of cell types enabling treatment resistance and metastatic spread.

The new tool, described Sept. 24 in a paper in Nature Genetics, can be used to quantify this plasticity in samples of tumor cells. The researchers demonstrated it with analyses of tumor samples from animal models and human patients, identifying, for example, a key transitional cell state in glioblastoma, the most common form of brain cancer.

New therapy for glioma receives FDA approval

The FDA has approved a new targeted drug specifically for brain tumors called low-grade gliomas. The drug, vorasidenib, was shown in clinical trials to delay progression of low-grade gliomas that had mutations in the IDH1 or IDH2 genes.

“Although there have been other targeted therapies for the treatment of brain tumors with the IDH mutation, [this one] has been one of the most successful in survival prolongation of brain tumor patients,” said Darell Bigner, MD, PhD, the E. L. and Lucille F. Jones Cancer Distinguished Research Professor and founding director of the Preston Robert Tisch Brain Tumor Center at Duke.

In clinical trials, progression-free survival was estimated to be 27.7 months for people in the vorasidenib group versus 11.1 months for those in the placebo group.

Enzyme Key to Brain Function and Synapse Health Discovered

Summary: A new study reveals that the absence of the TRMT10A enzyme disrupts tRNA levels, leading to impaired protein synthesis and brain function. Researchers found that mice lacking the Trmt10a gene had decreased levels of key tRNAs, which affected neuronal synapses and cognitive abilities.

The findings suggest that while tRNA reduction occurs in multiple tissues, the brain is particularly vulnerable to its effects. This research could pave the way for new therapies targeting tRNA modification to treat intellectual disabilities.

How Your Brain Detects Patterns without Conscious Thought

To make sense of the world around us, the brain must process an…


Neurons in certain brain areas integrate ‘what’ and ‘when’ information to discern hidden order in events happening in real time.

By Miryam Naddaf & Nature magazine

The human brain is constantly picking up patterns in everyday experiences — and can do so without conscious thought, finds a study of neuronal activity in people who had electrodes implanted in their brain tissue for medical reasons.

Consciousness and the Dennett Paradox

Hoboken, April 20, 2024. Daniel Dennett’s death feels like the end of an era, the era of ultra-materialist, ultra-Darwinian, swaggering, know-it-all scientism. Who’s left? Dawkins? Dennett isn’t as smart as he thinks he is, I liked to say, because no one is. He lacked the self-doubt gene, but he forced me to doubt myself, he made me rethink what I think, and what more can you ask of a philosopher? I first encountered Dennett’s in-your-face brilliance in 1981 when I read The Mind’s I, and his name popped up at a consciousness shindig I attended just last week. To honor Dennett, I’m posting a free, revised version of my 2017 critique of his claim that consciousness is an “illusion.” I’m also coining a phrase, “the Dennett Paradox,” explained below.— John Horgan

Of all the odd notions to emerge from debates over consciousness, the oddest is that it doesn’t exist, at least not in the way we think it does. It is an illusion, like “Santa Claus” or “American democracy.”

Descartes said consciousness is the one undeniable fact of our existence, and I find it hard to disagree. I’m conscious right now, as I type this sentence, and you are presumably conscious as you read it (although I can’t be absolutely sure).

Gut Microbiome and Aspirin May Reverse Hormonal Issues

Summary: Researchers found that mutations in the Sox3 gene cause hypopituitarism, a condition where the pituitary gland produces insufficient hormones, leading to growth issues and infertility. In a study on mice, they discovered that Sox3 mutations affect brain cells called NG2 glia, which are essential for hormone production.

Treating the mice with aspirin or altering their gut microbiome restored NG2 glia levels and reversed hypopituitarism. These findings suggest that both aspirin and gut bacteria could be explored as potential treatments for people with Sox3 mutations or other hormone-related disorders.

Temporal Mechanics: D-Theory of Time | Podcast Preview

Take a listen to this 7-min.


Podcast preview discussing the D-Theory of Time paper and the upcoming eBook release: The nature of time has long been a subject of profound inquiry within both the realms of physics and philosophy. This research paper introduces the “D-Theory of Time,” a novel conceptual framework that seeks to advance our comprehension of temporal mechanics. Departing from traditional paradigms, the D-Theory posits that time is not merely a linear progression of events but a dynamic, multidimensional construct influenced by both physical and cognitive phenomena. By integrating insights from quantum mechanics, relativity, and cognitive science, this theory offers a more holistic understanding of temporal flow and its implications on our perception of reality. Key elements include the exploration of temporal entanglement, the fluidity of past, present, and future, and the interplay between consciousness and temporal experience. This paper aims to elucidate the foundational principles of the D-Theory, provide empirical support through experimental data, and discuss its potential to resolve longstanding paradoxes in the study of time. The D-Theory of Time represents a significant upgrade to our understanding of temporal mechanics, opening new avenues for research and philosophical contemplation.

TEMPORAL MECHANICS: D-Theory as a Critical Upgrade to Our Understanding of the Nature of Time, The Seminal Papers series, by Alex M. Vikoulov, is now available to pre-order as a Kindle eBook on Amazon!

Release Date: January 5, 2025; Written by Alex M. Vikoulov; Publisher: Ecstadelic Media Group, Burlingame, California, USA; Format: Kindle eBook; Price: $9.99.

*Pre-Order eBook now: https://www.amazon.com/dp/B0DHL9GCW8?tag=lifeboatfound-20

/* */