Toggle light / dark theme

Evolutionary biologists at Johns Hopkins Medicine report they have combined PET scans of modern pigeons along with studies of dinosaur fossils to help answer an enduring question in biology: How did the brains of birds evolve to enable them to fly?

The answer, they say, appears to be an adaptive increase in the size of the cerebellum in some fossil vertebrates. The cerebellum is a brain region responsible for movement and motor control.

The research findings are published in the Jan. 31 issue of the Proceedings of the Royal Society B.

This is interesting. Who knew brain drain would be helpful? Haha it’s a different context but it’s medicinal in this sense. Amazing discovery!


Estimated read time: 2–3 minutes.

SALT LAKE CITY — Add this to the list of potential targets to treat Alzheimer’s and other neurodegenerative disorders: Researchers in South Korea have discovered a network of lymphatic vessels at the back of the nose that help drain cerebral spinal fluid from the brain.

According to Neuroscience News, the “groundbreaking” study, published in the journal Nature, reveals a previously unknown outflow path for the fluid, which could have implications for targeting neurodegenerative ills like Alzheimer’s and other dementias.

Engineers at MIT, Penn State University, and Carnegie Mellon University have devised a way to manipulate cells in three dimensions using sound waves. These “acoustic tweezers” could make possible 3D printing of cell structures for tissue engineering and other applications, the researchers say.

Designing tissue implants that can be used to treat human disease requires precisely recreating the natural tissue architecture, but so far it has proven difficult to develop a single method that can achieve that while keeping cells viable and functional.

“The results presented in this paper provide a unique pathway to manipulate biological cells accurately and in three dimensions, without the need for any invasive contact, tagging, or biochemical labeling,” says Subra Suresh, president of Carnegie Mellon and former dean of engineering at MIT. “This approach could lead to new possibilities for research and applications in such areas as regenerative medicine, neuroscience, tissue engineering, biomanufacturing, and cancer metastasis.”

Jan 29 (Reuters) — The first human patient has received an implant from brain-chip startup Neuralink on Sunday and is recovering well, the company’s billionaire founder Elon Musk said.

“Initial results show promising neuron spike detection,” Musk said in a post on the social media platform X on Monday.

Spikes are activity by neurons, which the National Institute of Health describes as cells that use electrical and chemical signals to send information around the brain and to the body.

Year 2017 face_with_colon_three


Tissue Nanotransfection (TNT), that can generate any cell type of interest for treatment within the patient’s own body. This technology may be used to repair injured tissue or restore function of aging tissue, including organs, blood vessels and nerve cells.

“By using our novel nanochip technology, injured or compromised organs can be replaced. We have shown that skin is a fertile land where we can grow the elements of any organ that is declining,” said Dr. Chandan Sen, director of Ohio State’s Center for Regenerative Medicine & Cell Based Therapies, who co-led the study with L. James Lee, professor of chemical and biomolecular engineering with Ohio State’s College of Engineering in collaboration with Ohio State’s Nanoscale Science and Engineering Center.

Researchers studied mice and pigs in these experiments. In the study, researchers were able to reprogram skin cells to become vascular cells in badly injured legs that lacked blood flow. Within one week, active blood vessels appeared in the injured leg, and by the second week, the leg was saved. In lab tests, this technology was also shown to reprogram skin cells in the live body into nerve cells that were injected into brain-injured mice to help them recover from stroke.

Evidence that amyloid-beta particles are infectious and cause dementia in rare cases involving people who got growth hormone from cadavers.

Aβ is described as “prion like”…a seed can lead to more Aβ


The findings support a controversial hypothesis that proteins related to the neurodegenerative disease can be ‘seeded’ in the brain through material taken from cadavers.