Toggle light / dark theme

Multiple sclerosis (MS) is a neurological disease that usually leads to permanent disabilities. It affects about 2.9 million people worldwide, and about 15,000 in Switzerland alone. One key feature of the disease is that it causes the patient’s own immune system to attack and destroy the myelin sheaths in the central nervous system.

These protective sheaths insulate the nerve fibers, much like the plastic coating around a copper wire. Myelin sheaths ensure that electrical impulses travel quickly and efficiently from nerve cell to nerve cell. If they are damaged or become thinner, this can lead to irreversible visual, speech and coordination disorders.

So far, however, it hasn’t been possible to visualize the myelin sheaths well enough to reliably diagnose and treat MS. Now researchers at ETH Zurich, led by Markus Weiger and Emily Baadsvik from the Institute for Biomedical Engineering, have developed a new magnetic resonance imaging (MRI) procedure that maps the condition of the myelin sheaths more accurately than was previously possible. The researchers successfully tested the procedure on healthy people for the first time.

Ball is not alone in calling for a drastic rethink of how scientists discuss biology. There has been a flurry of publications in this vein in the past year, written by me and others24. All outline reasons to redefine what genes do. All highlight the physiological processes by which organisms control their genomes. And all argue that agency and purpose are definitive characteristics of life that have been overlooked in conventional, gene-centric views of biology.

This burst of activity represents a frustrated thought that “it is time to become impatient with the old view”, as Ball says. Genetics alone cannot help us to understand and treat many of the diseases that cause the biggest health-care burdens, such as schizophrenia, cardiovascular diseases and cancer. These conditions are physiological at their core, the author points out — despite having genetic components, they are nonetheless caused by cellular processes going awry. Those holistic processes are what we must understand, if we are to find cures.

Ultimately, Ball concludes that “we are at the beginning of a profound rethinking of how life works”. In my view, beginning is the key word here. Scientists must take care not to substitute an old set of dogmas with a new one. It’s time to stop pretending that, give or take a few bits and pieces, we know how life works. Instead, we must let our ideas evolve as more discoveries are made in the coming decades. Sitting in uncertainty, while working to make those discoveries, will be biology’s great task for the twenty-first century.

Scientists have made progress in understanding how the brain processes time, potentially rewriting the narrative on neural flexibility and cognitive function.

The research, led by Professor Arkarup Banerjee in the Cold Spring Harbor Laboratory, focused on the vocalizations of Alston’s singing mouse from Costa Rica, offers profound insights into how our brains may bend the perception of time to adapt to varying circumstances.

This phenomenon could have far-reaching implications across numerous fields including technology, education, and therapy.

A team of researchers has created the first functional 3D-printed brain tissue to examine the brain’s function and study various neurological disorders.


The first functional 3D-printed brain tissue has been developed to examine the human brain’s function and study various neurological disorders.

According to experts at the University of Wisconsin-Madison, printed tissue can “grow and function like typical brain tissue.”

This 3D-printed brain model might be useful in studying various neurological and neurodevelopmental problems, including Alzheimer’s and Parkinson’s disease.

A team of University of Wisconsin–Madison scientists has developed the first 3D-printed brain tissue that can grow and function like typical brain tissue.

It’s an achievement with important implications for scientists studying the brain and working on treatments for a broad range of neurological and neurodevelopmental disorders, such as Alzheimer’s and Parkinson’s disease.

“This could be a hugely powerful model to help us understand how and parts of the brain communicate in humans,” says Su-Chun Zhang, professor of neuroscience and neurology at UW–Madison’s Waisman Center. “It could change the way we look at , neuroscience, and the pathogenesis of many neurological and psychiatric disorders.”

The rare condition posterior cortical atrophy (PCA) involves strange, troubling issues with vision and spatial awareness – including difficulty judging distances, seeing movement, and recognizing objects – and a new study highlights its close relationship to Alzheimer’s disease in more detail than ever before.

PCA and Alzheimer’s have long been linked with each other, because they share a lot of the same pathological changes in the brain. However, the rarity of PCA has made it hard for researchers to fully assess it in relation to Alzheimer’s.

To address that, an international team of researchers analyzed data on 1,092 individuals with PCA, finding that it was a very strong predictor for Alzheimer’s: in 94 percent of cases, tell-tale Alzheimer’s brain changes were observed, and were most likely contributing to PCA.