Menu

Blog

Archive for the ‘neuroscience’ category: Page 168

Feb 21, 2023

Path To AGI, AI Alignment, Digital Minds | Nick Bostrom and Juan Benet | Breakthroughs in Computing

Posted by in categories: neuroscience, robotics/AI

Protocol Labs founder Juan Benet speaks with Nick Bostrom, a Swedish-born philosopher with a background in theoretical physics, computational neuroscience, l…

Feb 21, 2023

How the “black hole” optical illusion messes with your mind

Posted by in categories: cosmology, neuroscience

Researchers have created a new optical illusion that makes your brain try to predict the future — namely, entering a dark tunnel.

Feb 21, 2023

Prolonged microgravity induces reversible and persistent changes on human cerebral connectivity

Posted by in category: neuroscience

Rs-fMRI is used to investigate human brain connectivity changes induced by prolonged microgravity in cosmonauts before and after spaceflight, with both persistent and reversible location specific changes in connectivity being observed.

Feb 21, 2023

Study shows that distinct pyramidal cell types drive different patterns of cortical activity during decision-making

Posted by in categories: genetics, neuroscience

The outer layer of the brain, known as the cortex, is made of different types of neurons. Neuroscience studies suggest that these different neuron types have distinct functions, yet for a long time this was difficult to ascertain, due to the inability to examine and manipulate them in the brains of living beings.

In recent years, opened new possibilities for studying cells and their functions. Using some of these techniques, researchers at Forschungszentrum Jülich, RWTH Aachen University, Cold Spring Harbor Laboratory and other institutes in the United States closely examined the functions of different pyramidal cells, which are commonly found in the human cortex.

Their findings, published in Nature Neuroscience, suggest that distinct types of pyramidal cells drive patterns of cortical activity associated with different functions. The team’s study builds on some of their previous works focusing on in the cortex.

Feb 21, 2023

What Do The Reconstructed Brains of 125-Million-Year-Old Spinosaurs Tell Us?

Posted by in category: neuroscience

A study suggests that the spinosaurs’ brains weren’t specialized for their semi-aquatic lifestyles.

Feb 21, 2023

Brain implant startup backed by Bezos and Gates is testing mind-controlled computing on humans

Posted by in categories: biotech/medical, computing, neuroscience

Synchron’s BCI is inserted through the blood vessels, which Oxley calls the “natural highways” into the brain. Synchron’s stent, called the Stentrode, is fitted with tiny sensors and is delivered to the large vein that sits next to the motor cortex. The Stentrode is connected to an antenna that sits under the skin in the chest and collects raw brain data that it sends out of the body to external devices.

Peter Yoo, senior director of neuroscience at Synchron, said since the device is not inserted directly into the brain tissue, the quality of the brain signal isn’t perfect. But the brain doesn’t like being touched by foreign objects, Yoo said, and the less invasive nature of the procedure makes it more accessible.

“There’s roughly about 2,000 interventionalists who can perform these procedures,” Yoo told CNBC. “It’s a little bit more scalable, compared to, say, open-brain surgery or burr holes, which only neurosurgeons can perform.”

Feb 21, 2023

A Physical Theory For When the Brain Performs Best

Posted by in categories: neuroscience, robotics/AI

Early critiques pointed out that proving a network was near the critical point required improved statistical tests. The field responded constructively, and this type of objection is rarely heard these days. More recently, some work has shown that what was previously considered a signature of criticality might also be the result of random processes. Researchers are still investigating that possibility, but many of them have already proposed new criteria for distinguishing between the apparent criticality of random noise and the true criticality of collective interactions among neurons.

Meanwhile, over the past 20 years, research in this area has steadily become more visible. The breadth of methods being used to assess it has also grown. The biggest questions now focus on how operating near the critical point affects cognition, and how external inputs can drive a network to move around the critical point. Ideas about criticality have also begun to spread beyond neuroscience. Citing some of the original papers on criticality in living neural networks, engineers have shown that self-organized networks of atomic switches can be made to operate near the critical point so that they compute many functions optimally. The deep learning community has also begun to study whether operating near the critical point improves artificial neural networks.

The critical brain hypothesis may yet prove to be wrong, or incomplete, although current evidence does support it. Either way, the understanding it provides is generating an avalanche of questions and answers that tell us much more about the brain — and computing generally — than we knew before.

Feb 20, 2023

Nanoparticle-based targeted drug delivery system for treatment of obesity and atherosclerosis

Posted by in categories: biotech/medical, nanotechnology, neuroscience

A research team from LKS Faculty of Medicine, the University of Hong Kong (HKUMed) has developed thyroid hormone (TH)–encapsulated nanoparticles modified with an adipose-homing peptide, which selectively transports TH to adipose tissues. This will advance the treatment of obesity-related medical complications with TH by overcoming the severe adverse effects caused by systemic administration. The new findings are now published in Nature Communications.

Obesity is a major risk factor for multiple life-threatening such as diabetes and cardiovascular and neurodegenerative disorders. TH is an ancient hormone with therapeutic potential for obesity and its related medical complications by promoting energy expenditure. However, despite enormous research efforts in the past decades, have failed to demonstrate obvious clinical benefits of chronic systemic administration of TH on in obese individuals.

Furthermore, due to widespread expression of TH receptors, systemic administration of TH often leads to serious deleterious effects on multiple organs, including tachycardia, , muscle wasting, and osteoporosis. Skeletal muscle and adipose tissues are thought to be the two major target organs where TH exerts its stimulatory actions on metabolic rate and energy expenditure. However, whether selective delivery of TH to adipose tissues is sufficient to induce weight loss remains unclear.

Feb 20, 2023

Israeli scientists find groundbreaking approach for treating Alzheimer’s

Posted by in categories: biotech/medical, neuroscience

An Alzheiber’s treatment porposed by Israeli scientists targets mitochondrial gatekeeper, controlling deterioration of cells.

Feb 19, 2023

Achieving a better understanding of how the blood-brain barrier works

Posted by in categories: biotech/medical, engineering, neuroscience

Up to now, the use of models to research the barrier that separates the circulatory from the nervous system has proven to be either limited or extremely complicated. Researchers at ETH Zurich have developed a more realistic model that can also be used to better explore new treatments for brain tumors.

Mario Modena is a postdoc working in the Bio Engineering Laboratory at ETH Zurich. If he were to explain his research on the —the wall that protects our central nervous system from harmful substances in the —to an 11-year-old, he would say, “This wall is important, because it stops the bad guys from getting into the brain.” If the brain is damaged or sick, he says, holes can appear in the wall. Sometimes, such holes can actually be useful, for example, for supplying the brain with urgently needed medicine. “So what we are trying to understand is how to maintain this wall, break through it and repair it again.”

This wall is also important from a medical perspective, because many diseases of the central are linked to an injury to the blood-brain barrier. To discover how this barrier works, scientists often conduct experiments on live animals. In addition to such experiments being relatively expensive, may provide only part of the picture of what is going on in a . Moreover, there are some critics, who question the basic validity of animal testing. An alternative is to base experiments on that have been cultivated in the laboratory.