Toggle light / dark theme

Depression linked to presence of immune cells in the brain’s protective layer

Immune cells released from bone marrow in the skull in response to chronic stress and adversity could play a key role in symptoms of depression and anxiety, say researchers.

The discovery—found in a study in mice—sheds light on the role that inflammation can play in mood disorders and could help in the search for new treatments, in particular for those individuals for whom current treatments are ineffective.

Around 1 billion people will be diagnosed with a mood disorder such as or anxiety at some point in their life. While there may be many underlying causes, —when the body’s immune system stays active for a long time, even when there is no infection or injury to fight—has been linked to depression. This suggests that the immune system may play an important role in the development of mood disorders.

Exploring criminal behavior in patients with dementia

A suspected perpetrator who can barely remember his name, several traffic violations committed by a woman in her mid-fifties who is completely unreasonable and doesn’t understand her behavior—should such cases be brought before a court? And how does the state deal with people who commit acts of violence without meaning to?

Those questions come to mind if one hears those examples from everyday clinical praxis with persons suffering from . Neurodegenerative diseases might affect several functions of the brain, ranging from memory in Alzheimer’s disease to behavior, such as in behavioral variant frontotemporal dementia, and to sensorimotor function in Parkinson’s disease.

One of the most interesting consequences of these alterations is the fact that persons affected by these diseases might develop criminal risk behavior like harassment, traffic violation, theft or even behavior causing harm to other people or animals, even as the first disease sign.

How pediatric brain tumors grow: Blocking a chemical messenger could offer new route to treatment

The most common type of brain tumor in children, pilocytic astrocytoma (PA), accounts for about 15% of all pediatric brain tumors. Although this type of tumor is usually not life-threatening, the unchecked growth of tumor cells can disrupt normal brain development and function.

Current treatments focus mainly on removing the tumor cells, but recent studies have shown that non-cancerous cells, such as , also play a role in brain tumor formation and growth, suggesting novel approaches to treating these cancers.

Scientists have long known that a nerve cell signaling chemical called can increase the growth of cancers throughout the body, but despite years of investigation, they haven’t figured out exactly how this happens, or how to stop it.

Two distinct microglia populations linked to autism-like and depression-like behaviors in mice

The anterior insular cortex (aIC) is an important brain region known to contribute to the regulation of emotions, the integration of bodily sensations, decision-making and some other functions. Past studies have linked this brain region to some neuropsychiatric disorders characterized by unusual patterns of thinking and behavior, including autism spectrum disorder (ASD) and depression.

However, the precise cellular and neurobiological processes via which the aIC might contribute to ASD and have not yet been clearly elucidated. Some neuroscientists have been exploring the possibility that , that play a role in eliminating damaged cells and pathogens, could play a role in some of the behaviors linked with these two neuropsychiatric disorders.

Researchers at Tsinghua University recently carried out a study involving mice, aimed at investigating the possibility that microglia in the aIC play a part in some of the symptoms of ASD and depression. Their paper, published in Molecular Psychiatry, identifies two distinct subtypes of microglia that appear to contribute to autism-like and depression-like behavior in mice.

/* */