Toggle light / dark theme

Elon Musk, CEO of Space Exploration Technologies (SpaceX) and Tesla Motors, Inc, was at Startmeup Hong Kong and talked about what he thought were areas of technological opportunity.

At 37 minutes into this video Elon Musk talks about high potential technology like Hyperloop which he currently does not have time to address electric aircraftgenetics is thorny but is our best shot at many tough diseasesbrain computer interfaces at the neuron level has potential for intelligence augmentationNeural Lace was mentioned.

Scientists from China and the US have found a pioneering way to inject a tiny electronic mesh sensor into the brain that fully integrates with cerebral matter and enables computers to monitor brain activity.

Researchers from Harvard and the National Center for Nanoscience and Technology in Beijing have succeeded in inventing a flexible electrical circuit that fits inside a 0.1mm-diameter glass syringe in a water-based solution.

This tiny electronic mesh sensor is thin and flexible enough to be injected into the brain and gentle enough to integrate fully with brain cells, making human cyborgs a possibilityLieber Research Group, Harvard University

One key question can it help control Glioblastoma.


A new “wearable” device being tested to suppress brain-cancer cell growth in patients ended its clinical trials early with positive results. Optune is a battery powered device researchers claim will extend the life of a patient with “newly diagnosed glioblastoma” when it is paired with traditional temozolomide chemotherapy. Researches were confident enough in its effectiveness to end the clinical trials (which ran from July 2009 to November 2014) of the device early. The device is likely not “the cure for cancer,” but it is a step forward in extending the life expectancy of brain-cancer patients and more research will be needed to see if it may be effective on other forms of cancer.

“With this new data, it appears the tumor-treating fields should be used upfront and become a standard of care. We should add this modality to what we’re currently doing for our patients,” said Dr. Maciej Mrugala, a brain-cancer specialist who led UW Medicine’s participation in the clinical trial.

“You get almost five months’ survival benefit. It may not sound like a lot, but if you’re living with this diagnosis, this is a meaningful improvement,” said Mrugala. UW Medicine was one of the first 15 U.S. providers to employ the novel tumor-treating therapy; now there are more than 200.

Researchers at Harvard are working to identify the brain processes that make humans so good at recognising patterns. Their ultimate goals is to develop biologically-inspired computer systems for smarter AI. Computers inspired by the human brain could be used to detect network invasions, read MRI images, and even drive cars.

Their ultimate goals is to develop biologically-inspired computer systems for smarter AI.

Read more

An experiment by University of Washington researchers is setting the stage for advances in mind reading technology. Using brain implants and sophisticated software, researchers can now predict what their subjects are seeing with startling speed and accuracy.

The ability to view a two-dimensional image on a page or computer screen, and then transform that image into something our minds can immediately recognize, is a neurological process that remains mysterious to scientists. To learn more about how our brains perform this task—and to see if computers can collect and predict what a person is seeing in real time—a research team led by University of Washington neuroscientist Rajesh Rao and neurosurgeon Jeff Ojermann demonstrated that it’s possible to decode human brain signals at nearly the speed of perception. The details of their work can be found in a new paper in PLOS Computational Biology.

The team sought the assistance of seven patients undergoing treatment for epilepsy. Medications weren’t helping alleviate their seizures, so these patients were given temporary brain implants, and electrodes were used to pinpoint the focal points of their seizures. The UW researchers saw this as an opportunity to perform their experiment. “They were going to get the electrodes no matter what,” noted Ojermann in a UW NewsBeat article. “We were just giving them additional tasks to do during their hospital stay while they are otherwise just waiting around.”

Read more

Researchers have successfully demonstrated how it is possible to interface graphene — a two-dimensional form of carbon — with neurons, or nerve cells, while maintaining the integrity of these vital cells. The work may be used to build graphene-based electrodes that can safely be implanted in the brain, offering promise for the restoration of sensory functions for amputee or paralysed patients, or for individuals with motor disorders such as epilepsy or Parkinson’s disease.

Read more

(draft)

We’ve just posted a proposed definition of the notion of a technological singularity in our blog. Please comment freely.

Synopsis: Careful expositions of a technological singularity anticipated by the mid-21st century can be uniquely described using three common characteristics: superintelligence, acceleration, and discontinuity.

Read more

Now, this is intriguing — pathways are a critical part of our system that monitors and manages how our bodies respond and interact to changes in our bodies. This recent SRC report focuses on the researchers efforts in monitoring pathways and how defects in pathways contribute to the biology and pathophysiology of cancer.


Bethesda, MD — This SRC focuses on new developments in the biology of lipid signaling with an emphasis on cancer, neuronal and cardiovascular diseases. The emphasis will be on molecular, cellular, structure/function and enzymatic mechanisms of physiological signaling pathways and how defects in these pathways contribute to the biology and pathophysiology of cancer, neurodegeneration and cardiovascular disease. The focus will be on how diacylglycerol, phosphatidic acid, lysophospholipids, sphingolipids and phosphoinositide lipids modulate specific pathways and processes in the contexts of physiological growth-regulatory signals, intracellular and extracellular vesicular trafficking, regulation of cell polarization, migration, motility and invasion, autophagy and epithelial extrusion, and as nuclear regulators of mRNA processing and gene expression. These sessions will include discussions on how signaling becomes dysfunctional in diseases. There will be presentations on new translational approaches and therapeutic targets. There will be significant representation from the pharmaceutical and biotechnology industry in order to facilitate networking between industry and academia. The topic areas have been chosen to maximize discussion of provocative and important developments.

We particularly wish to encourage the participation of new and junior researchers in the field and are securing additional support to provide PhD/postdoctoral fellow travel awards. Organizers have kept multiple short session speaking slots open. These will be selected from novel advances during 2015–2016 and from submitted abstracts. There will be multiple opportunities for new investigators and postdoctoral fellows to present and discuss their work including at poster sessions, short talks and short 5–10 minute oral ‘research snapshots’ to highlight their submitted abstracts. There will be multiple poster sessions during the conference. Time will also be allocated to at least two “meet the expert sessions” wherein established research leaders will dedicate time to interact with trainees and new investigators, specifically to give advice concerning the science and possible prospects for postdoctoral training, research funding, publishing or employment tracks.

The 2016 meeting brings together a wide range of leading investigators from across the globe. The scope of their subjects is vast, encompassing studies at the level of single proteins as well as the pathophysiology of complex disease. The program will highlight inter-disciplinary approaches and how major advances in biophysical, proteomic, genomic, imaging, modeling and therapeutic approaches are driving the field. The discussion forums and recreational activities will provide all participants extensive opportunities to exchange new ideas and forge new collaborations in a supportive interdisciplinary environment for participants at all stages of their research profession.

Finally. Bionic eye technology that could give sight back to millions of individuals worldwide is set to start trials.

Adding to the recent buzz surrounding the development of bionic eye systems is news of scientists from Australia who are set to begin trials on The Phoenix99 bionic eye—a fully implantable system that marks a significant breakthrough in neural stimulation technology.

The device, developed by engineers at the University of New South Wales (UNSW), has already been demonstrated successfully in pre-clinical work led by a team of elite surgical experts from Sydney, and it is expected to give patients better vision than any of the current restoration technologies.

Read more