Menu

Blog

Archive for the ‘nanotechnology’ category: Page 37

Dec 14, 2023

Superconducting Nanowires: A Quantum Breakthrough in Protein Ion Detection

Posted by in categories: nanotechnology, quantum physics

Detection efficiency is 1,000 times higher than conventional ion detectors due to high sensitivity.

An international research team led by quantum physicist Markus Arndt (University of Vienna) has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry. The results of this study were recently published in the journal Science Advances.

Advancements in Mass Spectrometry.

Dec 14, 2023

Quantum Networks Transformed: Nanometric Optomechanical Cavities Unlock New Realms

Posted by in categories: computing, nanotechnology, quantum physics

A groundbreaking study introduces advanced nanometric optomechanical cavities, paving the way for more efficient quantum networks and improving quantum computing and communication technologies.

The ability to transmit information coherently in the band of the electromagnetic spectrum from microwave to infrared is vitally important to the development of the advanced quantum networks used in computing and communications.

A study conducted by researchers at the State University of Campinas (UNICAMP) in Brazil, in collaboration with colleagues at ETH Zurich in Switzerland and TU Delft in the Netherlands, focused on the use of nanometric optomechanical cavities for this purpose. These nanoscale resonators promote interaction between high-frequency mechanical vibrations and infrared light at wavelengths used by the telecommunications industry.

Dec 13, 2023

The Emergence Of Smart Cities In The Digital Era

Posted by in categories: internet, nanotechnology, robotics/AI, security, sustainability, wearables

By Chuck Brooks


Realizing the potential of Smart Cities will require public-private cooperation and security by design.

The idea of smart cities is starting to take shape as the digital era develops. A city that has developed a public-private infrastructure to support waste management, energy, transportation, water resources, smart building technology, sustainability, security operations and citizen services is referred to as a “smart city”. Realizing the potential of Smart Cities will require public-private cooperation and security by design.

Continue reading “The Emergence Of Smart Cities In The Digital Era” »

Dec 13, 2023

Researchers develop spintronic probabilistic computers compatible with current AI

Posted by in categories: nanotechnology, particle physics, robotics/AI

Moore’s Law predicts that computers get faster every two years because of the evolution of semiconductor chips.


Researchers at Tohoku University and the University of California, Santa Barbara, have shown a proof-of-concept of energy-efficient computer compatible with current AI. It utilizes a stochastic behavior of nanoscale spintronics devices and is particularly suitable for probabilistic computation problems such as inference and sampling.

The team presented the results at the IEEE International Electron Devices Meeting (IEDM 2023) on December 12, 2023.

Continue reading “Researchers develop spintronic probabilistic computers compatible with current AI” »

Dec 12, 2023

Spinning up control: Propeller shape helps direct nanoparticles (w/video)

Posted by in categories: biotech/medical, chemistry, engineering, mathematics, nanotechnology

Self-propelled nanoparticles could potentially advance drug delivery and lab-on-a-chip systems — but they are prone to go rogue with random, directionless movements. Now, an international team of researchers has developed an approach to rein in the synthetic particles.

Led by Igor Aronson, the Dorothy Foehr Huck and J. Lloyd Huck Chair Professor of Biomedical Engineering, Chemistry and Mathematics at Penn State, the team redesigned the nanoparticles into a propeller shape to better control their movements and increase their functionality. They published their results in the journal Small (“Multifunctional Chiral Chemically-Powered Micropropellers for Cargo Transport and Manipulation”).

A propeller-shaped nanoparticle spins counterclockwise, triggered by a chemical reaction with hydrogen peroxide, followed by an upward movement, triggered by a magnetic field. The optimized shape of these particles allows researchers to better control the nanoparticles’ movements and to pick up and move cargo particles. (Video: Active Biomaterials Lab)

Dec 12, 2023

Using solid-state nanopores and DNA barcoding to identify misfolded proteins in neurodegenerative disorders

Posted by in categories: biotech/medical, chemistry, nanotechnology, neuroscience

A team of chemists, microbiologists and physicists at the University of Cambridge in the U.K. has developed a way to use solid-state nanopores and multiplexed DNA barcoding to identify misfolded proteins such as those involved in neurodegenerative disorders in blood samples. In their study, reported in the Journal of the American Chemical Society, the group used multiplexed DNA barcoding techniques to overcome problems with nanopore filtering techniques for isolating harmful oligomers.

Prior research has shown that the presence of harmful oligomers in the brain can lead to misfolding of proteins associated with neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. Medical researchers have been looking for a way to detect them in the blood as a way to diagnose neurodegenerative disease and to track the progression once it has been confirmed.

Unfortunately, finding them in complex mixtures such as blood has proven to be a daunting task. One approach has shown promise—using sensors—but to date, they cannot track target oligomers as they speed through customizable solid-state nanopore sensors. In this new effort, the research team overcame this problem by using customizable DNA nanostructures.

Dec 12, 2023

Professor Brings Insight to Cell Therapy with Nanobots

Posted by in categories: biotech/medical, engineering, life extension, nanotechnology

There’s an unfortunate irony in cell therapy that holds it back from its full potential: Regenerating tissues often must be damaged to know if the treatment is working, such as surgically removing tissue to see if rejuvenation is occurring beneath.

The alternative isn’t much better: Patients can choose to wait and see if their health improves, but after weeks of uncertainty, they might find that no healing has taken place without a clear explanation as to why.

Jinhwan Kim, a new assistant professor of biomedical engineering at the University of California, Davis, who holds a joint appointment with the Department of Surgery at UC Davis Health, wants to change all of that. In his research program, he combines nanotechnology and novel bioimaging techniques to provide non-invasive, real-time monitoring of cellular function and health.

Dec 12, 2023

How would nanobots disassemble something on a molecular level

Posted by in categories: energy, nanotechnology

I’ve been studying this topic for use in a story I’m working on and I’ve come across various videos and interviews on the topic, but they all seem mostly concerned with assembly of larger objects.

I was just curious if the same actions that would assemble an object could be reversed to disassemble it, or if there were other necessary actions that needed to be taken. I understand that energy needs to be put in to break a molecular bond, so is that something that would have to be taken into account as well?

Also, as a side note, the current idea is to have the nanobots be mostly carbon constructs, if that affects the way things work.

Dec 11, 2023

Harnessing Polaritons: The Tiny Powerhouses Transforming Semiconductor Technology

Posted by in categories: nanotechnology, particle physics, quantum physics

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today’s most cutting-edge semiconductors, those phonons don’t remove enough heat. That’s why Purdue University researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called “polaritons.” Credit: Purdue University photo/DALL-E.

Dec 10, 2023

New DNA nanobots can replicate themselves using UV light

Posted by in categories: biotech/medical, nanotechnology

An international team of scientists has collaborated to develop a new DNA-based nanobot that can self-replicate indefinitely under the right conditions.


A new study has been published showcasing a new DNA-based nanobot that could open the door to producing life-saving drugs in the human body.

Page 37 of 290First3435363738394041Last