Toggle light / dark theme

Aug. 27 (UPI) — Built-in night vision may not be far off. Scientists have developed nanoparticles that allow mice to see near-infrared light.

Researchers are scheduled to describe the technological breakthrough on Tuesday at 12:30 p.m. ET at the American Chemical Society’s fall meeting, held this week in San Diego. Their presentation will be streamed live online.

“When we look at the universe, we see only visible light,” lead researcher Gang Han, a material scientists and biochemist at the University of Massachusetts Medical School, said in a news release. “But if we had near-infrared vision, we could see the universe in a whole new way. We might be able to do infrared astronomy with the naked eye, or have night vision without bulky equipment.”

Carbon isn’t just the stuff life is made of—it’s also the stuff our future is being built on.

Carbon—a versatile element that frequently trades off its electrons to create various forms of itself—has been gaining an exciting reputation in tech thanks to the successful exfoliation of graphene, a sheet of carbon that’s just one atom thick and has remarkable chemical properties.

But carbon nanotubes, a sort of cousin to graphene, has been quietly staking out its own place in the world of materials science.

Astronauts would have to fly their rocket into the Spaceline, attach to a solar-powered shuttle and be dragged up to the Moon.

Carbon nanotubes will need to be built on a large scale for the design.

Zephyr Penoyre, one of the Columbia astronomy graduate students behind the Spaceline, told Futurism: The line becomes a piece of infrastructure, much like an early railroad.

Scientists at MIT built a 16-bit microprocessor out of carbon nanotubes and even ran a program on it, a new paper reports.

Silicon-based computer processors seem to be approaching a limit to how small they can be scaled, so researchers are looking for other materials that might make for useful processors. It appears that transistors made from tubes of rolled-up, single-atom-thick sheets of carbon, called carbon nanotubes, could one day have more computational power while requiring less energy than silicon.

“This work is particularly exciting because carbon nanotubes are one of the most promising supplements in the future of beyond-silicon computers,” Max Shulaker, the study’s corresponding author and assistant professor at MIT, told Gizmodo.

One of the most difficult challenges in treating the brain cancer glioblastoma is that few drugs can pass through the blood-brain barrier. Scientists at Cedars-Sinai in Los Angeles have developed a system to circumvent this hurdle—one that combines a powerful immuno-oncology drug with a polymer-based delivery vehicle that can cross the blood-brain barrier.

The researchers showed that this “nano-immunotherapy” treatment crossed the blood-brain barrier in mouse models of glioblastoma, and that it stopped tumor cells from multiplying. They published their findings in the journal Nature Communications.

The Cedars-Sinai team used the polymer scaffold to deliver two types of immune checkpoint inhibitors, blocking either CTLA-4 or PD-1. When injected into the bloodstream of mice, the drugs quickly infiltrated brain tumors, but not healthy brain tissue, the researchers reported.

Movies featuring heroes with superpowers, such as flight, X-ray vision or extraordinary strength, are all the rage. But while these popular characters are mere flights of fancy, scientists have used nanoparticles to confer a real superpower on ordinary mice: the ability to see near-infrared light. Today, scientists report progress in making versions of these nanoparticles that could someday give built-in night vision to humans.

The researchers will present their results at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.

“When we look at the universe, we see only ,” says Gang Han, Ph.D., the project’s principal investigator, who is presenting the work at the meeting. “But if we had near-infrared vision, we could see the universe in a whole new way. We might be able to do infrared astronomy with the , or have without bulky equipment.”

A gene called Lipocalin 2 is a major culprit in triple-negative breast cancer, an aggressive form of the disease for which there are few effective, targeted treatments. A team of researchers at Boston Children’s Hospital has developed an innovative way to knock out the gene using the editing system CRISPR and has shown its potential for treating triple-negative breast tumors in mice.

But to make CRISPR work in breast tumors, the researchers had to figure out a way to deliver the technology into breast cancer cells without using a virus or something else that might cause off-target side effects. So they encapsulated it in nanoparticles and targeted it at ICAM-1, a molecule expressed on breast cancer cells.

The encapsulated CRISPR system knocked out Lipocalin 2 with 81% efficiency in tumor samples, and when injected into mouse models of triple-negative breast cancer, it slowed tumor growth by 77%. The researchers reported the results in the journal Proceedings of the National Academy of Sciences.

It’s not like the one in your car, but a team of physicists at Trinity College Dublin have built what they claim is the world’s smallest engine. The engine is the size of a single calcium ion — about ten billion times smaller than an automobile engine.

Rather than powering your next road trip, the atomic engine could one day be used to lay the foundation for extraordinary, futuristic nanotechnologies.

Here’s how it works: the calcium ion holds an electrical charge, which makes it spin. This angular momentum is then used to convert heat from a laser beam into vibrations.

A research team led by the University of California San Diego has discovered the root cause of why lithium metal batteries fail—bits of lithium metal deposits break off from the surface of the anode during discharging and are trapped as “dead” or inactive lithium that the battery can no longer access.

The discovery, published Aug. 21 in Nature, challenges the conventional belief that fail because of the growth of a layer, called the solid interphase (SEI), between the anode and the electrolyte. The researchers made their discovery by developing a technique to measure the amounts of inactive lithium species on the anode—a first in the field of battery research—and studying their micro- and nanostructures.

The findings could pave the way for bringing rechargeable lithium batteries from the lab to the market.

Self-assembled materials are attractive for next-generation materials, but their potential to assemble at the nanoscale and form nanostructures (cylinders, lamellae etc.) remains challenging. In a recent report, Xundu Feng and colleagues at the interdisciplinary departments of chemical and environmental engineering, biomolecular engineering, chemistry and the center for advanced low-dimension materials in the U.S., France, Japan and China, proposed and demonstrated a new approach to prevent the existing challenges. In the study, they explored size-selective transport in the water-continuous medium of a nanostructured polymer template formed using a self-assembled lyotropic H1 (hexagonal cylindrical shaped) mesophase (a state of matter between liquid and solid). They optimized the mesophase composition to facilitate high-fidelity retention of the H1 structure on photoinduced crosslinking.

The resulting nanostructured polymer material was mechanically robust with internally and externally crosslinked nanofibrils surrounded by a continuous aqueous medium. The research team fabricated a with size selectivity at the 1 to 2 nm length scale and water permeabilities of ~10 liters m−2 hour−1 bar−1 μm. The membranes displayed excellent anti-microbial properties for practical use. The results are now published on Science Advances and represent a breakthrough for the potential use of self-assembled membrane-based nanofiltration in practical applications of water purification.

Membrane separation for filtration is widely used in diverse technical applications, including seawater desalination, gas separation, food processing, fuel cells and the emerging fields of sustainable power generation and distillation. During nanofiltration, dissolved or suspended solutes ranging from 1 to 10 nm in size can be removed. New nanofiltration membranes are of particular interest for low-cost treatment of wastewaters to remove organic contaminants including pesticides and metabolites of pharmaceutical drugs. State-of-the-art membranes presently suffer from a trade-off between permeability and selectivity where increased permeability can result in decreased selectivity and vice-versa. Since the trade-off originated from the intrinsic structural limits of conventional membranes, materials scientists have incorporated self-assembled materials as an attractive solution to realize highly selective separation without compromising permeability.