Menu

Blog

Archive for the ‘nanotechnology’ category: Page 125

Mar 2, 2022

Quantum Friction Explains Water’s Freaky Flow

Posted by in categories: nanotechnology, particle physics, quantum physics

Schran agrees. “This new mechanism of friction is definitely very interesting and exciting,” he says. “But what is missing in my opinion, is a clear benchmark measurement.” Quantifying, for instance, how friction changes based on water’s interaction with single versus multiple layers of carbon atoms could go a long way to fully verifying the new theory, which predicts that greater numbers of electrons in the multilayered carbon will boost friction.

The study team is already progressing along this path and dreaming of what lies beyond. They are hoping to eventually test their theory with flowing liquids other than water, and nanotubes composed of elements besides carbon. In such cases, molecules in the liquid and the electrons within nanotube walls would follow different patterns of interaction, possibly leading to changes in the degree of quantum friction. Lydéric Bocquet says that it may even be possible to control the amount of friction a flowing liquid experiences by constructing nanotubes with electron behavior explicitly in mind.

The new study sets the stage for years of complex exploration by experimental and theoretical physicists alike and, according to Kavokine, also signals a fundamental shift in how physicists should think about friction. “Physicists have long thought that it is different at the nanoscale, but this difference was not so obvious to find and describe,” he says. “They were dreaming about some quantum behavior arising at these scales—and now we have shown how it does.”

Mar 2, 2022

A new lightweight, nanotube material is better at absorbing impact than Kevlar

Posted by in categories: materials, nanotechnology

Feb 28, 2022

New method for rapid, efficient hydrogen generation from water

Posted by in categories: energy, nanotechnology

Aluminum is a highly reactive metal that can strip oxygen from water molecules to generate hydrogen gas. Now, researchers at UC Santa Cruz have developed a new cost-effective and effective way to use aluminum’s reactivity to generate clean hydrogen fuel.

In a new study, a team of researchers shows that an easily produced composite of gallium and aluminum creates aluminum nanoparticles that react rapidly with water at room temperature to yield large amounts of hydrogen. According to researchers, the gallium was easily recovered for reuse after the reaction, which yields 90% of the hydrogen that could theoretically be produced from the reaction of all the aluminum in the composite.


Easy aluminum nanoparticles split water and generate hydrogen gas rapidly under ambient conditions.

Continue reading “New method for rapid, efficient hydrogen generation from water” »

Feb 24, 2022

A step closer to biodegradable household batteries

Posted by in categories: chemistry, nanotechnology, sustainability

Fully organic rechargeable household batteries are an ideal alternative to traditional metal-based batteries, in particular for reducing pollution to landfill and the environment.

Now researchers at Flinders University, with Australian and Chinese collaborators, are developing an all-organic polymer battery that can deliver a cell voltage of 2.8V—a big leap in improving the energy storage capability of organic batteries.

“While starting with small household batteries, we already know organic redox-active materials are typical electroactive alternatives due to their inherently safe, lightweight and structure-tunable features and, most importantly, their sustainable and environmentally friendly,” says senior lecturer in chemistry Dr. Zhongfan Jia, a research leader at Flinders University’s Institute for Nanoscale Science and Technology.

Feb 22, 2022

NanoWire Tech Could Usher In a New Age of Supercomputing

Posted by in categories: economics, energy, government, nanotechnology, physics, supercomputing

Building a better supercomputer is something many tech companies, research outfits, and government agencies have been trying to do over the decades. There’s one physical constraint they’ve been unable to avoid, though: conducting electricity for supercomputing is expensive.

Not in an economic sense—although, yes, in an economic sense, too—but in terms of energy. The more electricity you conduct, the more resistance you create (electricians and physics majors, forgive me), which means more wasted energy in the form of heat and vibration. And you can’t let things get too hot, so you have to expend more energy to cool down your circuits.

Feb 22, 2022

Researchers use magnetic systems to artificially reproduce the learning and forgetting functions of the brain

Posted by in categories: biological, information science, nanotechnology, robotics/AI

With the advent of Big Data, current computational architectures are proving to be insufficient. Difficulties in decreasing transistors’ size, large power consumption and limited operating speeds make neuromorphic computing a promising alternative.

Neuromorphic computing, a new brain-inspired computation paradigm, reproduces the activity of biological synapses by using artificial neural networks. Such devices work as a system of switches, so that the ON position corresponds to the information retention or “learning,” while the OFF position corresponds to the information deletion or “forgetting.”

In a recent publication, scientists from the Universitat Autònoma de Barcelona (UAB), the CNR-SPIN (Italy), the Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Institute of Micro and Nanotechnology (IMN-CNM-CSIC) and the ALBA Synchrotron have explored the emulation of artificial synapses using new advanced material devices. The project was led by Serra Húnter Fellow Enric Menéndez and ICREA researcher Jordi Sort, both at the Department of Physics of the UAB, and is part of Sofia Martins Ph.D. thesis.

Feb 17, 2022

DeepMind Simulates Matter on the Nanoscale With Artificial Intelligence

Posted by in categories: chemistry, mapping, nanotechnology, quantum physics, robotics/AI

In a paper published by Science, DeepMind demonstrates how neural networks can improve approximation of the Density Functional (a method used to describe electron interactions in chemical systems). This illustrates deep learning’s promise in accurately simulating matter at the quantum mechanical.


In a paper published in the scientific journal Science, DeepMind demonstrates how neural networks can be used to describe electron interactions in chemical systems more accurately than existing methods.

Density Functional Theory, established in the 1960s, describes the mapping between electron density and interaction energy. For more than 50 years, the exact nature of mapping between electron density and interaction energy — the so-called density functional — has remained unknown. In a significant advancement for the field, DeepMind has shown that neural networks can be used to build a more accurate map of the density and interaction between electrons than was previously attainable.

Continue reading “DeepMind Simulates Matter on the Nanoscale With Artificial Intelligence” »

Feb 17, 2022

Nano-engineered sealer leads to more durable concrete

Posted by in categories: engineering, life extension, nanotechnology

A nanomaterials-engineered penetrating sealer developed by Washington State University researchers is able to better protect concrete from moisture and salt—the two most damaging factors in crumbling concrete infrastructure in northern states.

The novel sealer showed a 75% improvement in repelling water and a 44% improvement in reducing salt damage in laboratory studies compared to a commercial sealer. The work could provide an additional way to address the challenge of aging bridges and pavements in the U.S.

“We focused on one of the main culprits that compromises the integrity and durability of concrete, which is moisture,” said Xianming Shi, professor in the Department of Civil and Environmental Engineering who led the work. “If you can keep concrete dry, the vast majority of durability problems would go away.”

Feb 11, 2022

New plant-derived composite is tough as bone and hard as aluminum

Posted by in categories: nanotechnology, sustainability

The strongest part of a tree lies not in its trunk or its sprawling roots, but in the walls of its microscopic cells.

A single wood cell wall is constructed from fibers of cellulose—nature’s most abundant polymer, and the main structural component of all plants and algae. Within each fiber are reinforcing , or CNCs, which are chains of organic polymers arranged in nearly perfect crystal patterns. At the nanoscale, CNCs are stronger and stiffer than Kevlar. If the crystals could be worked into materials in significant fractions, CNCs could be a route to stronger, more sustainable, naturally derived plastics.

Now, an MIT team has engineered a composite made mostly from cellulose nanocrystals mixed with a bit of synthetic polymer. The organic crystals take up about 60 to 90 percent of the material—the highest fraction of CNCs achieved in a composite to date.

Feb 11, 2022

New flexible supercapacitor could boost the lifespan of wearables

Posted by in categories: energy, internet, nanotechnology, wearables

A team of researchers from the University of Surrey’s Advanced Technology Institute (ATI) and the Federal University of Pelotas (UFPel), Brazil, has developed a new type of supercapacitor that can be integrated into footwear or clothing, an advance with applications in wearables and IoT (Internet of Things) devices.

A supercapacitor is an electricity storage device, similar to a battery, but it stores and releases electricity much faster.

The researchers have devised a novel method for the development of flexible supercapacitors based on carbon nanomaterials. The new method, which is cheaper and less time-consuming to fabricate, involves transferring aligned carbon nanotube (CNT) arrays from a silicon wafer to a polydimethylsiloxane (PDMS) matrix. This is then coated in a material called polyaniline (PANI), which stores energy through a mechanism known as pseudocapacitance, offering outstanding energy storage properties with exceptional mechanical integrity.