Menu

Blog

Archive for the ‘nanotechnology’ category: Page 124

Mar 12, 2022

Synthetic synapses get more like a real brain

Posted by in categories: biological, chemistry, food, nanotechnology, robotics/AI, supercomputing

The human brain, fed on just the calorie input of a modest diet, easily outperforms state-of-the-art supercomputers powered by full-scale station energy inputs. The difference stems from the multiple states of brain processes versus the two binary states of digital processors, as well as the ability to store information without power consumption—non-volatile memory. These inefficiencies in today’s conventional computers have prompted great interest in developing synthetic synapses for use in computers that can mimic the way the brain works. Now, researchers at King’s College London, UK, report in ACS Nano Letters an array of nanorod devices that mimic the brain more closely than ever before. The devices may find applications in artificial neural networks.

Efforts to emulate biological synapses have revolved around types of memristors with different resistance states that act like memory. However, unlike the the devices reported so far have all needed a reverse polarity to reset them to the initial state. “In the brain a change in the changes the output,” explains Anatoly Zayats, a professor at King’s College London who led the team behind the recent results. The King’s College London researchers have now been able to demonstrate this brain-like behavior in their synaptic synapses as well.

Zayats and team build an array of gold nanorods topped with a polymer junction (poly-L-histidine, PLH) to a metal contact. Either light or an electrical voltage can excite plasmons—collective oscillations of electrons. The plasmons release hot electrons into the PLH, gradually changing the chemistry of the polymer, and hence changing it to have different levels of conductivity or light emissivity. How the polymer changes depends on whether oxygen or hydrogen surrounds it. A chemically inert nitrogen chemical environment will preserve the state without any energy input required so that it acts as non-volatile memory.

Mar 12, 2022

Smaller than ever—exploring the unusual properties of quantum-sized materials

Posted by in categories: chemistry, nanotechnology, particle physics, quantum physics

The development of functional nanomaterials has been a major landmark in the history of materials science. Nanoparticles with diameters ranging from 5 to 500 nm have unprecedented properties, such as high catalytic activity, compared to their bulk material counterparts. Moreover, as particles become smaller, exotic quantum phenomena become more prominent. This has enabled scientists to produce materials and devices with characteristics that had been only dreamed of, especially in the fields of electronics, catalysis, and optics.

But what if we go smaller? Sub-nanoparticles (SNPs) with particle sizes of around 1 nm are now considered a new class of materials with distinct properties due to the predominance of quantum effects. The untapped potential of SNPs caught the attention of scientists from Tokyo Tech, who are currently undertaking the challenges arising in this mostly unexplored field. In a recent study published in the Journal of the American Chemical Society, a team of scientists from the Laboratory of Chemistry and Life Sciences, led by Dr. Takamasa Tsukamoto, demonstrated a novel molecular screening approach to find promising SNPs.

As one would expect, the synthesis of SNPs is plagued by technical difficulties, even more so for those containing multiple elements. Dr. Tsukamoto explains: “Even SNPs containing just two different elements have barely been investigated because producing a system of subnanometer scale requires fine control of the composition ratio and particle size with atomic precision.” However, this team of scientists had already developed a novel method by which SNPs could be made from different metal salts with extreme control over the total number of atoms and the proportion of each element.

Mar 11, 2022

Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue

Posted by in categories: biotech/medical, life extension, nanotechnology

Circa 2017


Arrayed nanochannels can be used to controllably transfect and reprogram tissues in vivo for applications in regenerative medicine and cell-based therapies.

Mar 9, 2022

The liquid hard drive that could store a terabyte of data in a tablespoon of fluid

Posted by in categories: computing, nanotechnology

Circa 2014


New research on nanoparticles shows that they could be used to encode information when suspended in a liquid. This could one day allow us to store vast amounts of data in a very small volume of “digital colloid.”

Mar 6, 2022

A ‘greener’ way to clean wastewater treatment filters

Posted by in categories: chemistry, energy, finance, nanotechnology, sustainability

Membrane filters don’t require much energy to purify water, making them popular for wastewater treatment. To keep these materials in tip-top condition, they’re commonly cleaned with large amounts of strong chemicals, but some of these agents destroy the membranes in the process. Now, researchers reporting in ACS Applied Materials & Interfaces have developed reusable nanoparticle catalysts that incorporate glucose to help efficiently break down contaminants inside these filters without damaging them.

Typically, dirty wastewater filters are unclogged with strong acids, bases or oxidants. Chlorine-containing oxidants such as bleach can break down the most stubborn organic debris. But they also damage polyamide membranes, which are in most commercial nanofiltration systems, and they produce toxic byproducts. A milder alternative to bleach is hydrogen peroxide, but it decomposes contaminants slowly.

Previously, scientists have combined hydrogen peroxide with iron oxide to form that improve hydrogen peroxide’s efficiency in a process known as the Fenton reaction. Yet in order for the Fenton reaction to clean filters, extra hydrogen peroxide and acid are needed, increasing financial and environmental costs. One way to avoid these additional chemicals is to use the enzyme glucose oxidase, which simultaneously forms and gluconic acid from glucose and oxygen. So, Jianquan Luo and colleagues wanted to combine glucose oxidase and into a system that catalyzes the Fenton-based breakdown of contaminants, creating an efficient and delicate cleaning system for .

Mar 6, 2022

5D Optical Disc Could Store 500TB for Billions of Years

Posted by in categories: computing, internet, nanotechnology

Hard drives and flash storage have gotten more reliable over the years, but only on a human timescale. What if we need data storage that lasts longer? Decades? Millennia? The key to that vision might be 5D optical storage, which has a data density 10,000 times that of a Blu-ray disc. But it’s always been far too slow to write data onto glass plates in this way—until now. A new technique developed at the University of Southampton speeds up the process dramatically, without impacting the reliability of the data.

This type of data storage uses three layers of nanoscale dots in a glass disc. The size, orientation, and position (in three dimensions) of the dots gives you the five “dimensions” used to encode data. Researchers say that a 5D disc could remain readable after 13.8 billion years, but it would be surprising if anyone was even around to read them at that point. In the shorter term, 5D optical media could also survive after being heated to 1,000 degrees Celsius. You can see an earlier, smaller version of the disc above.

This is not the first time 5G optical data storage has popped up. It was just impractically slow before. Data is added to the discs with lasers, but if the laser moves too fast, the disc’s structural integrity is compromised. The technique devised by doctoral researcher Yuhao Lei uses a femtosecond laser with a high repetition rate. The process starts with a seeding pulse that creates a nanovoid, but the fast pulse doesn’t need to actually write any data. The repeated weak pulses leverage a phenomenon known as near-field enhancement to sculpt the nanostructures in a more gentle way.

Mar 5, 2022

Nanotechnology: the world’s smallest meal

Posted by in categories: food, nanotechnology

Circa 2013


Can the food industry avoid the mistakes of GM and put nanoketchup on the UK’s menu?

Mar 5, 2022

Like bacteria firing spearguns

Posted by in categories: biotech/medical, nanotechnology

Biologists from ETH Zurich have discovered speargun-like molecular injection systems in two types of bacteria and have described their structure for the first time. The special nanomachines are used by the microbes for the interaction between cells and could one day be useful as tools in biomedicine.

Mar 4, 2022

What you need to know about nano-food

Posted by in categories: food, nanotechnology

Circa 2013 o.o


Katharine Sanderson answers the big questions about the tiny technology on its way to your plate.

Mar 2, 2022

Applications of the amniotic membrane in tissue engineering and regeneration: the hundred-year challenge

Posted by in categories: bioengineering, biotech/medical, life extension, nanotechnology

The amniotic membrane (Amnio-M) has various applications in regenerative medicine. It acts as a highly biocompatible natural scaffold and as a source of several types of stem cells and potent growth factors. It also serves as an effective nano-reservoir for drug delivery, thanks to its high entrapment properties. Over the past century, the use of the Amnio-M in the clinic has evolved from a simple sheet for topical applications for skin and corneal repair into more advanced forms, such as micronized dehydrated membrane, amniotic cytokine extract, and solubilized powder injections to regenerate muscles, cartilage, and tendons. This review highlights the development of the Amnio-M over the years and the implication of new and emerging nanotechnology to support expanding its use for tissue engineering and clinical applications. Graphical Abstract.