Menu

Blog

Archive for the ‘mathematics’ category: Page 95

Mar 16, 2021

How does the brain interpret computer languages?

Posted by in categories: computing, mathematics, neuroscience

The debate holds a special interest for neuroscientists; since computer programming has only been around for a few decades, the brain has not evolved any special region to handle it. It must be repurposing a region of the brain normally used for something else.

So late last year, neuroscientists in MIT tried to see what parts of the brain people use when dealing with computer programming. “The ability to interpret computer code is a remarkable cognitive skill that bears parallels to diverse cognitive domains, including general executive functions, math, logic, and language,” they wrote.

Since coding can be learned as an adult, they figured it must rely on some pre-existing cognitive system in our brains. Two brain systems seemed like likely candidates: either the brain’s language system, or the system that tackles complex cognitive tasks such as solving math problems or a crossword. The latter is known as the “multiple demand network.”

Mar 11, 2021

After cracking the ‘sum of cubes’ puzzle for 42, researchers discover a new solution for 3

Posted by in categories: alien life, information science, mathematics

What do you do after solving the answer to life, the universe, and everything? If you’re mathematicians Drew Sutherland and Andy Booker, you go for the harder problem.

In 2019, Booker, at the University of Bristol, and Sutherland, principal research scientist at MIT, were the first to find the answer to 42. The number has pop culture significance as the fictional answer to “the ultimate question of life, the universe, and everything,” as Douglas Adams famously penned in his novel “The Hitchhiker’s Guide to the Galaxy.” The question that begets 42, at least in the novel, is frustratingly, hilariously unknown.

In mathematics, entirely by coincidence, there exists a polynomial equation for which the answer, 42, had similarly eluded mathematicians for decades. The equation x3+y3+z3=k is known as the sum of cubes problem. While seemingly straightforward, the equation becomes exponentially difficult to solve when framed as a “Diophantine equation”—a problem that stipulates that, for any value of k, the values for x, y, and z must each be .

Mar 8, 2021

New Algorithm Breaks Speed Limit for Solving Linear Equations

Posted by in categories: computing, information science, mathematics

By harnessing randomness, a new algorithm achieves a fundamentally novel — and faster — way of performing one of the most basic computations in math and computer science.

Mar 7, 2021

Isadore Singer Transcended Mathematical Boundaries

Posted by in categories: mathematics, physics

A former graduate student reflects on how Isadore Singer, who died on February 11, brought together mathematicians, physicists and anyone else interested in the deeper connections between diverse fields.

Mar 4, 2021

Insights into plant consciousness from neuroscience, physics and mathematics: A role for quasicrystals?

Posted by in categories: computing, mathematics, neuroscience, quantum physics

There is considerable debate over whether plants are conscious and this, indeed, is an important question. Here I look at developments in neuroscience, physics and mathematics that may impact on this question. Two major concomitants of consciousness in animals are microtubule function and electrical gamma wave synchrony. Both these factors may also play a role in plant consciousness. I show that plants possess aperiodic quasicrystal structures composed of ribosomes that may enable quantum computing, which has been suggested to lie at the core of animal consciousness. Finally I look at whether a microtubule fractal suggests that electric current plays a part in conventional neurocomputing processes in plants.

Feb 28, 2021

Early-Warning for Seizures Could Be a Game-Changer for Epilepsy Patients

Posted by in categories: biotech/medical, information science, mathematics, neuroscience

A new mathematical algorithm examines data from EEG and brain implants to learn each epilepsy patient’s unique brain pattern signatures. The system can predict the onset of a seizure within an hour, allowing the patient to take necessary interventions.

Feb 23, 2021

Mathematicians Set Numbers in Motion to Unlock Their Secrets

Posted by in category: mathematics

A new proof demonstrates the power of arithmetic dynamics, an emerging discipline that combines insights from number theory and dynamical systems.

Feb 17, 2021

The Coach Who Led the U.S. Math Team Back to the Top

Posted by in category: mathematics

Po-Shen Loh has harnessed his competitive impulses and iconoclastic tendencies to reinvigorate the U.S. Math Olympiad program.

Feb 14, 2021

New AI ‘Ramanujan Machine’ uncovers hidden patterns in numbers

Posted by in categories: mathematics, robotics/AI

A new artificially intelligent ‘Ramanujan Machine’ can generate hundreds of new mathematical conjectures, which might lead to new math proofs and theorems.

Feb 8, 2021

DARPA Opens Door to Producing “Unimaginable” Designs for DoD

Posted by in categories: mathematics, robotics/AI, space

DARPA’s TRAnsformative DESign (TRADES) program, which began in 2017, set out to develop foundational design tools needed to explore the vast space opened by new materials and additive manufacturing processes commonly called 3D printing. The program recently concluded having successfully developed new mathematics and computational techniques, including artificial intelligence and machine learning, that will allow future designers to create previously unimaginable shapes and structures of interest to defense and commercial manufacturing.

Page 95 of 142First9293949596979899Last