Consider the potential problems. Number one would be that any potential aliens we encounter won’t be speaking a human language. Number two would be the lack of knowledge about the aliens’ culture or sociology — even if we could translate, we might not understand what relevance it has to their cultural touchstones.
Eamonn Kerins, an astrophysicist from the Jodrell Bank Centre for Astrophysics at the University of Manchester in the U.K., thinks that the aliens themselves might recognize these limitations and opt to do some of the heavy lifting for us by making their message as simple as possible.
“One might hope that aliens who want to establish contact might be attempting to make their signal as universally understandable as possible,” said Kerins in a Zoom interview. “Maybe it’s something as basic as a mathematical sequence, and already that conveys the one message that perhaps they hoped to send in the first place, which is that we’re here, you’re not alone.”
Arithmetic, rooted in our biological perception, is a natural consequence of how we perceive and organize the world around us. This connection between perception and mathematical truths suggests that mathematics is both a uniquely human invention and a universal discovery, highlighting a profound unity between the mind and the physical universe…
Prof. Donald Hoffman talks to Essentia Foundation’s Hans Busstra about his theory of conscious agents, according to which space and time are cognitive constructs in consciousness, not an objective scaffolding of the world outside. The interview also touches on Prof. Hoffman’s personal history and life, bringing the warmth of his humanity to the academic rigor of his theories.
American physicist, John Wheeler (1911−2008), made seminal contributions to the theories of quantum gravity and nuclear fission, but is best known for coining the term ‘black holes’. A keen teacher and mentor, he was also a key figure in the Manhattan Project. [Listener: Ken Ford]
TRANSCRIPT: I knew the stories about Gödel being concerned always about his health. I knew from his friend Oscar Morgenstern how Gödel would never take a pills prescription from his doctor without getting out a big medical book and studying up on that pill himself to make sure that it was okay. But I didn’t realize how far his dreams went, because I had failed to resonate to a talk he gave in 1945 at the symposium held in honor of Einstein’s birthday. In that talk Gödel had described what he called a Rotating Universe, a universe where all the galaxies turn the same way, and where the geometry is such that you keep on going living your life and you come round and come back and can live it over again; ‘Closed Time-like Line’ was the magic phrase to describe it. So you didn’t have to worry about the pill because you come back and live your life all over again. Well, after I’d introduced the two I said “Professor Gödel, we’d like to know what the relation is between the great Heisenberg Principle of Uncertainty or Indeterminism; and your famous proof that every significant mathematical system contains theorems which cannot be proven, your theorem of Unprovable Propositions.” Well, he didn’t want to talk about that. It turned out that later that he had walked and talked enough with Einstein to dismiss quantum theory. He didn’t believe quantum[theory]. All he wanted to know is what we were going to say in our book about the rotating universe that he had described. Well actually, we weren’t saying anything. Well, this bothered him and he wanted to know what the evidence is today, at that moment, about whether galaxies do rotate in the same way. We said we hadn’t studied it. Well it turned out that he himself had taken out the great Hubble atlas of the galaxies and page after page had opened it up and looked at each galaxy, determined the direction of its axis. He made a statistics of these numbers and found there was no preferred direction of rotation, so they couldn’t all be rotating in the same way.
Researchers from the University of Jyväskylä were able to simplify the most popular technique of artificial intelligence, deep learning, using 18th-century mathematics. They also found that classical training algorithms that date back 50 years work better than the more recently popular techniques. Their simpler approach advances green IT and is easier to use and understand.
The recent success of artificial intelligence is significantly based on the use of one core technique: deep learning. Deep learning refers to artificial intelligence techniques where networks with a large number of data processing layers are trained using massive datasets and a substantial amount of computational resources.
Deep learning enables computers to perform complex tasks such as analyzing and generating images and music, playing digitized games and, most recently in connection with ChatGPT and other generative AI techniques, acting as a natural language conversational agent that provides high-quality summaries of existing knowledge.
A study conducted in Japan has found that individuals exhibiting strong autistic traits are often inclined towards dichotomous thinking. The research suggests that these autistic traits might lead to a heightened intolerance of uncertainty, subsequently increasing the propensity for dichotomous thinking. The study was published in Scientific Reports.
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and challenges. Individuals with autism spectrum disorder typically have restricted interests, difficulties in social interaction and communication. The severity of these challenges can vary greatly from person to person. Some individuals with ASD may have significant language delays and struggle with everyday social interactions, while others may have milder symptoms and excel in certain areas, such as mathematics or art.
Aside from atypical social functioning, autistic individuals tend to exhibit a thinking pattern known as dichotomous, “black-and-white”, or binary thinking. This is a form of cognitive distortion wherein an individual perceives things in a binary way – either black or white, good or bad. There is no middle zone or space for any nuances. The result of this thinking pattern is that the person oversimplifies very complex issues, leading often to inappropriate or obviously poor decisions.
One of the most well-established and disruptive uses for a future quantum computer is the ability to crack encryption. A new algorithm could significantly lower the barrier to achieving this.
Despite all the hype around quantum computing, there are still significant question marks around what quantum computers will actually be useful for. There are hopes they could accelerate everything from optimization processes to machine learning, but how much easier and faster they’ll be remains unclear in many cases.
One thing is pretty certain though: A sufficiently powerful quantum computer could render our leading cryptographic schemes worthless. While the mathematical puzzles underpinning them are virtually unsolvable by classical computers, they would be entirely tractable for a large enough quantum computer. That’s a problem because these schemes secure most of our information online.
Study math for long enough and you will likely have cursed Pythagoras’s name, or said “praise be to Pythagoras” if you’re a bit of a fan of triangles.
But while Pythagoras was an important historical figure in the development of mathematics, he did not figure out the equation most associated with him (a2 + b2 = c2). In fact, there is an ancient Babylonian tablet (by the catchy name of IM 67118) which uses the Pythagorean theorem to solve the length of a diagonal inside a rectangle. The tablet, likely used for teaching, dates from 1770 BCE – centuries before Pythagoras was born in around 570 BCE.
Another tablet from around 1800–1600 BCE has a square with labeled triangles inside. Translating the markings from base 60 – the counting system used by ancient Babylonians – showed that these ancient mathematicians were aware of the Pythagorean theorem (not called that, of course) as well as other advanced mathematical concepts.