Toggle light / dark theme

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get my labs): https://www.ultalabtests.com/partners/michaellustgarten.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

A new “toolkit” to repair damaged DNA that can lead to aging, cancer and motor neuron disease (MND) has been discovered by scientists at the Universities of Sheffield and Oxford.

Published in Nature Communications, the research shows that a protein called TEX264, together with other enzymes, is able to recognize and “eat” toxic proteins that can stick to DNA and cause it to become damaged. An accumulation of broken, damaged DNA can cause cellular aging, cancer and neurological diseases such as MND.

Until now, ways of repairing this sort of DNA damage have been poorly understood, but scientists hope to exploit this novel repair toolkit of proteins to protect us from aging, cancer and neurological disease.

This age-related deterioration affects both innate and adaptive immunity, compromising immune function and leading to chronic inflammation that accelerates aging. Immunosenescence is characterized by alterations in immune cell populations and impaired functionality, resulting in increased susceptibility to infections, diminished vaccine efficacy, and higher prevalence of age-related diseases. Chronic low-grade inflammation further exacerbates these issues, contributing to a decline in overall health and resilience. This review delves into the characteristics of immunosenescence and examines the various intrinsic and extrinsic factors contributing to immune aging and how the hallmarks of aging and cell fates can play a crucial role in this process. Additionally, it discusses the impact of sex, age, social determinants, and gut microbiota health on immune aging, illustrating the complex interplay of these factors in altering immune function. Furthermore, the concept of immune resilience is explored, focusing on the metrics for assessing immune health and identifying strategies to enhance immune function. These strategies include lifestyle interventions such as diet, regular physical activity, stress management, and the use of gerotherapeutics and other approaches. Understanding and mitigating the effects of immunosenescence are crucial for developing interventions that support robust immune responses in aged individuals.

The immune system plays a crucial role in protecting our bodies from harmful pathogens. It is divided into two segments: innate immunity and adaptive immunity. The innate immune system acts as an immediate but non-specific first responder to defend against pathogens, composed of phagocytic and natural killer cells. Besides innate immune cells, another important component of the innate system includes physical barriers like skin and mucous membranes. Meanwhile, adaptive immunity is more specialized and requires time to mount a high-affinity and specific response, relying on anticipatory receptors that recognize pathogen-specific antigens. The adaptive immune response is centered around B and T lymphocytes, which are produced in the bone marrow and thymus, respectively (Farber, 2020; Lam et al., 2024). With age, the ability of our immune system to mount productive and timely responses to pathogens diminishes.

#AINews #ArtificialIntelligence #MachineLearning.

Unlocking Immortality: Explore the Future of Eternal Life through Brain Uploading! 🧠💻 Embrace cutting-edge technology as we delve into the possibility of uploading our human consciousness into digital realms, paving the way for eternal existence. Join us on this mind-blowing journey where science fiction meets reality, as we discuss brain upload, digital immortality, consciousness transfer, AI advancements, and the limitless potential of our digital future. 🔬🌌 Discover the key to everlasting life and transcendence in the digital age! 🚀 #EternalLife #BrainUploading #DigitalImmortality #ConsciousnessTransfer #AIAdvancements #FutureTech #Transcendence

For my presentation at the 7th Eurosymposium on Healthy Aging in Brussels tomorrow, I’ve significantly updated my slides “Solving Aging: Is AI all we need?” — It’s still possible to register and attend remotely today and/or tomorrow.


:The Eurosymposium on Healthy Ageing (EHA) is a unique biennial meeting of scientists working on the biology of ageing.

We were honored to have the brilliant Dr. David Sinclair PhD present a new perspective on his Information Theory of Aging during our longevity research hackathon at MIT Media Lab, from October 2024.

Follow Dr. David Sinclair and his groundbreaking work here:
• Harvard Lab: https://sinclair.hms.harvard.edu/peop
• X (Twitter): https://twitter.com/davidasinclair.
• Instagram: / davidsinclairphd.
• Site: https://davidasinclair.com.
• Order his best-selling book Lifespan: https://lifespanbook.com.

More about our research hackathon here: https://lu.ma/minds.
Our collaborator Augmentation Lab: https://augmentationlab.org.
Special thanks to our generous sponsor David Protein: https://davidprotein.com.

Useful Links:
https://ekkolapto.org.
• X (Twitter): https://twitter.com/ekkolapto.
• Instagram: / ekkolapto.

CHANDLER, Ariz. – The radiation-tolerant RTG4 field-programmable gate arrays (FPGAs) with lead-free flip-chip bumps from Microchip Technology Inc. in Chandler, Ariz., have earned the Qualified Manufacturers List (QML) Class V status from the U.S. Defense Logistics Agency (DLA).

These radiation-tolerant FPGAs are for critical space programs. QML Class V is the highest level of qualification for space components for human-rated, deep-space, and national security space programs.

RTG4 FPGAs offer more than 150,000 logic elements, and come in flip-chip package construction where flip-chip bumps connect the silicon die and the package substrate for extended the longevity.