Our comprehensive report provides a deep dive into the opportunities and challenges facing the aging in place industry. Download for FREE.
Category: life extension – Page 240
Kind of starts out with a no but ends in a yes. Just a few minutes long.
An increasing number of studies suggest the presence of a “metabolic clock” that controls aging. This clock involves the accumulation of metabolic alterations and a decline in metabolic homeostasis and biological fitness. There are nine cellular hallmarks of aging: telomere attrition, genomic instability, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, loss of proteostasis, deregulated nutrient sensing, epigenetic alterations, and altered intercellular communication. Metabolic alterations have been implicated in each of these processes.
Circa 2017
The brain is really little more than a collection of electrical signals. If we can learn to catalogue those then, in theory, you could upload someone’s mind into a computer, allowing them to live forever as a digital form of consciousness, just like in the Johnny Depp film Transcendence.
But it’s not just science fiction. Sure, scientists aren’t anywhere near close to achieving such a feat with humans (and even if they could, the ethics would be pretty fraught), but there’s few better examples than the time an international team of researchers managed to do just that with the roundworm Caenorhabditis elegans.
“Sunday Morning” anchor Jane Pauley hosts “Forever Young: Searching for the Fountain of Youth,” a one-hour primetime special exploring the wonders, rewards, and challenges of growing older, to air on CBS Sunday, November 28 at 10 p.m. ET/PT, and to stream on Paramount+.
Can we reset our biological clocks? | Watch Video Life expectancy has increased in recent decades, but researchers are looking for ways to further slow the aging process. Correspondent Lee Cowan looks into recent developments in the study of extending human life, and efforts to ward off disease by targeting the biology of aging itself.
Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD
Papers referenced in the video:
Polyamine-rich food decreases age-associated pathology and mortality in aged mice.
https://pubmed.ncbi.nlm.nih.gov/19735716/
Long-term treatment with spermidine increases health span of middle-aged Sprague-Dawley male rats.
https://pubmed.ncbi.nlm.nih.gov/32285289/
Cardioprotection and lifespan extension by the natural polyamine spermidine.
The National Institutes of Health has launched a program to study a rare type of cells, called “senescent” cells, that play both positive and negative roles in biological processes. The NIH Common Fund’s Cellular Senescence Network (SenNet) program will leverage recent advances in studying individual cells, or single-cell analysis, to comprehensively identify and characterize the differences in senescent cells across the body, across various states of human health, and across the lifespan. The rarity and diversity of these cells previously made them difficult to identify and study; therefore, a deeper understanding will help researchers develop therapies that encourage beneficial effects of senescent cells while suppressing their tissue-damaging effects.
“The number of senescent cells in a person’s body increases with age, which may reflect both an increase in the generation of these cells and a decreased ability of the aging immune system to regulate or eliminate these cells. This age-related accumulation of senescent cells leads to production of inflammatory molecules and corruption of healthy cells,” said Richard J. Hodes, M.D., director of the National Institute on Aging, part of NIH. “This can affect a person’s ability to withstand stress or illness, recuperate from injuries, and maintain normal brain function. The aim of NIH’s strengthened focus on this field of science is to one day conquer these and other challenges.”
A cell dividing into two cells is a hallmark of human development. Over time, our bodies accumulate a small number of cells that no longer divide. These “senescent” cells can play important roles in health, either directly or through the release of molecules that affect neighboring cells. Senescent cells can play positive roles, such as aiding wound repair or preventing tumor growth in some cancers. However, they can also contribute to chronic diseases of aging such as cardiovascular disease and neurodegeneration. For this reason, therapeutics called “senolytics” are being developed to target senescent cells and remove them from the body.
I am a huge fan of reading. So much so that I’m beginning to think it’s having a negative impact on my social life, but we’ll save that for another time… The point is that I read a LOT. And for the past seven years, I’ve been stuck on one genre: Science Fiction. From space operas and apocalyptic disasters, to robot revolts and galaxy-spanning quests — I’m down for it all.
The best sci fi authors can n o t only see how innovation might progress, but how humanity might evolve as a result. For a genre so heavily focused on science and technology, it’s surprisingly human.
So I get really excited when I see a headline like Meet Altos Labs, Silicon Valley’s Latest Wild Bet on Living Forever. It makes me feel like I’m living in the future. The rate of scientific advancement over the past 50 years has been increasingly mind boggling and it’s impossible to keep up with all the discoveries. First CRISPR, then private space travel, now immortality? It’s insane. Completely terrifying. And I love it.
I have a small YouTube channel which I create videos on clean energy and the environment. I have under 600 subs and many videos have not even hit 100 views but I am being increasingly targeted by fossil fuel activists and supporters, with personal attacks and misinformation.
I do respond to misinformation, and remove the worst comments but if anyone would like to help support me, nipping over to my channel, watching some videos and subscribing to the channel would be most appreciated.
We can show them that they are the minority, not us, and the wider the information spreads the quicker the change will be and the better life will be for everyone.
Thanks in advance and have an awesome day.
It is very likely that treatments to address the issues that cause aging & its related conditions & diseases will be within our reach in 15 to 20 years.
It is highly likely that a general realisation that these treatments are not only scientifically possible but within our reach will start to become increasingly apparent to the wider population in as little as maybe 5 years.
😳! Circa 2018
Some animals live fast and die young. That means they need to grow up fast, too. This week, researchers crowned a new record holder for quick growth: Susan Milius at Science News reports that the turquoise killifish, Nothobranchius furzeri, found in Mozambique, can reach maturity in just 14 days, the fastest of any known vertebrate animal.
That rapid maturation is an adaptation to the killifish’s habitat, according to the study published this week in the journal Current Biology. The fish spend most of their lives as tiny embryos that have been deposited in sediment in small depressions across the savannah. When rain fills the ephemeral pools, the embryos mature rapidly reaching sexual maturity and depositing their own embryos before the pool once again dries up. Not only do they make babies quickly, they bulk up fast, too—typically growing from about 5 millimeters to 54 millimeters in their lifespan.
Researchers have been aware of the turquoise killifish’s super-fast maturation for a while. In fact, the fish is used as a model animal in aging studies because of this trait. In the lab, where the fish live a relatively leisurely lifestyle, the average rate of maturation is 18 days.
For the last decade and more, Stem Cell research and regenerative medicine have been the rave of the healthcare industry, a delicate area that has seen steady advancements over the last few years.
The promise of regenerative medicine is simple but profound that one day medical experts will be able to diagnose a problem, remove some of our body cells called stem cells and use them to grow a cure for our ailment. Using our body cells will create a highly personalized therapy attuned to our genes and systems.
The terminologies often used in this field of medicine can get a bit fuzzy for the uninitiated, so in this article, I have relied heavily on the insights of Christian Drapeau, a neurophysiologist and stem cell expert.