Toggle light / dark theme

Mild, persistent inflammation in tissue is considered one of the biological hallmarks of the aging process in humans—and at the same time is a risk factor for diseases such as Alzheimer’s or cancer. Prof. Francesco Neri and Dr. Mahdi Rasa of the Leibniz Institute on Aging—Fritz Lipmann Institute (FLI) in Jena have succeeded for the first time in describing at the molecular level the regulatory network that drives the general, multiple-organ inflammatory response. Moreover, they were able to show that dietary restriction can influence this regulatory circuit, thereby inhibiting inflammation.

Inflammation is an immune response of the body that is, in itself, useful: our uses it to fight pathogens or to remove damaged cells from tissue. Once the immune cells have done their work, the inflammation subsides: the infection is over, the wound is healed. Unlike such acute inflammations, age-related is not local. The ramps up its activity overall, resulting in chronic low-grade inflammation. This aging-related inflammation is also known as inflammaging.

That was Aubrey de Grey, this is Aubrey de White. New foundation, new therapy tests.


Co-founder of the SENS Foundation, Dr Aubrey de Grey is the co-organiser of this week’s Longevity Summit Dublin 2022; he was keynote speaker at this week’s summit, speaking on Robust Mouse Rejuvenation: real soon now? and featuring on the panel discussion Blank Cheque, which also enjoyed contributions from our own Phil Newman, Michael West, Tom Weldon, Greg Grinberg and Evelyne Bischof.

But most excitingly, Dr de Grey used the platform of Longevity Summit Dublin to launch his new foundation; its Board of Directors already boasts Greg Grinberg as Executive Chair, Daria Khaltourina, Martin O’Dea (also Events Director), Gennady Stolyarov and David Wood.

Ralph C. Merkle is a computer scientist. He is one of the inventors of public key cryptography, the inventor of cryptographic hashing, and more recently a researcher and speaker of cryonics.

Videos in the talk: David Eagleman https://www.youtube.com/watch?v=-5tZtYns6kE molecular nanotechnology: https://www.youtube.com/watch?v=zqyZ9bFl_qg.

Filmed 2017/04/30

Eleven-year-old Simons only took a year to complete his bachelor’s degree, which usually takes at least three years.

In a conversation with the Dutch daily De Telegraaf, Simons said that, “I don’t really care if I’m the youngest.” “It’s all about getting knowledge for me.”

“This is the first puzzle piece in my goal of replacing body parts with mechanical parts,” Simons said.

Don’t think about living forever. Just think about never getting sick, ever again.

At least that’s how Aubrey de Grey would like you to contextualize his work. The notoriously bearded biomedical gerontologist is the scientific spark that lights up so many all-caps “immortality” headlines. De Grey wants to increase human longevity so significantly that death could become a thing of the past, a condition people fell prey to before they developed the medical technology to stop it. It’s been the center of his work for approximately 20 years.

De Grey started as a software guy at the genetics department of Cambridge University in 1992, maintaining a database of genetic information on fruit flies. In 1999 he published a book called “The Mitochondrial Free Radical Theory of Aging,” where he first laid out the key idea we know him for today: preventing damage to mitochondrial DNA ought to make people live much longer. The idea was so well-received that Cambridge awarded him a PhD the following year. De Grey condensed his thesis to a sound byte in a 2007 interview: “[Humans] are machines, and aging is the wearing out of a machine, the accumulation of damage to a machine, and hence potentially fixable.”

Enrollment of 51 patients exceeds target by ~10% due to high interest in the study

16-week data anticipated in Q1 2023 and 24-week data anticipated in Q2 2023

SOUTH SAN FRANCISCO, Calif., Sept. 19, 2022 (GLOBE NEWSWIRE) — UNITY Biotechnology, Inc. (“UNITY”) [NASDAQ: UBX], a biotechnology company developing therapeutics to slow, halt, or reverse diseases of aging, has completed enrollment for the ENVISION study, its Phase 2 clinical trial of UBX1325 in patients with wet age-related macular degeneration (AMD). This is an active comparator study, examining the efficacy of two doses of UBX1325 compared to every other month treatment with aflibercept through 24 weeks.

We look at the latest in regenerative medicine for treating knee problems. Osteoarthritis happens when the meniscus and cartilage wear out. Researchers aim to repair meniscal damage with autologous synovial stem cell transplants. Ligament tears, an injury common among athletes, are also usually treated with transplants using the patient’s own tendons or artificial ligaments. A bovine tendon has successfully been transplanted into a sheep, and a clinical trial will soon begin for use in humans.

Brian Cummings, UCI professor of physical medicine & rehabilitation and founding member of the Sue & Bill Gross Stem Cell Research Center, has received a five-year, $2.7 million grant from the California Institute for Regenerative Medicine to establish a training program that supports first-generation and underserved students pursuing careers in public health and regenerative medicine. The Creating Opportunities Through Mentorship and Partnership Across Stem Cell Science program will pair student scholars with faculty mentors. With their tuition covered and a stipend provided during their two years as scholars, the students will learn hands-on lab skills and human cell culture; be introduced to good manufacturing procedures in UCI’s new GMP facility; and earn a certificate in clinical research coordination. “COMPASS provides the opportunity for students to explore a variety of ways in which their education and research skills can be applied toward improving human health through career paths in the public and private sectors. UCI’s COMPASS scholars program will produce a cadre of well-trained individuals who are ready to contribute to the workforce,” said Cummings, who is also the School of Medicine’s associate dean for faculty development. “A parallel objective is to foster greater awareness and appreciation of diversity, equity and inclusion in trainees, mentors and other program participants.” Administered via the Sue & Bill Gross Stem Cell Research Center, the program will train 25 undergraduate and two-year college transfer students.

Increasing studies have reported the therapeutic effect of mesenchymal stem cell (MSC)-derived exosomes by which protein and miRNA are clearly characterized. However, the proteomics and miRNA profiles of exosomes derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) remain unclear.

In this study, we isolated exosomes from hESCs, hiPSCs, and human umbilical cord mesenchymal stem cells (hUC-MSCs) via classic ultracentrifugation and a 0.22-μm filter, followed by the conservative identification. Tandem mass tag labeling and label-free relative peptide quantification together defined their proteomics. High-throughput sequencing was performed to determine miRNA profiles. Then, we conducted a bioinformatics analysis to identify the dominant biological processes and pathways modulated by exosome cargos. Finally, the western blot and RT-qPCR were performed to detect the actual loads of proteins and miRNAs in three types of exosomes.

Based on our study, the cargos from three types of exosomes contribute to sophisticated biological processes. In comparison, hESC exosomes (hESC-Exos) were superior in regulating development, metabolism, and anti-aging, and hiPSC exosomes (hiPSC-Exos) had similar biological functions as hESC-Exos, whereas hUC-MSCs exosomes (hUC-MSC-Exos) contributed more to immune regulation.