Menu

Blog

Archive for the ‘information science’ category: Page 8

Jan 31, 2024

Mastering the quantum code: A primer on quantum software

Posted by in categories: computing, information science, quantum physics

In the world of quantum computing, the spotlight often lands on the hardware: qubits, superconducting circuits, and the like. But it’s time to shift our focus to the unsung hero of this tale – the quantum software, the silent maestro orchestrating the symphony of qubits. From turning abstract quantum algorithms into executable code to optimizing circuit designs, quantum software plays a pivotal role.

Here, we’ll explore the foundations of quantum programming, draw comparisons to classical computing, delve into the role of quantum languages, and forecast the transformational impact of this nascent technology. Welcome to a beginner’s guide to quantum software – a journey to the heart of quantum computing.

Quantum vs. Classical Programming: The Core Differences.

Jan 31, 2024

18 Black Holes Caught in The Act of Consuming Nearby Stars

Posted by in categories: cosmology, information science

Scientists identified 18 new Tidal Disruption Events (TDEs), instances where a nearby black hole violently tears apart a neighboring star.

The powerful gravitational force of the black holes rips apart the star in its vicinity, resulting in a substantial release of energy across the entire electromagnetic spectrum.

The new catalog of TDEs was found by combing through the archival data of the satellite telescope NEOWISE. The team identified infrared patterns associated with these intense, transient bursts using a novel algorithm.

Jan 31, 2024

Quasi-integrable Arrays: The Family Grows

Posted by in categories: information science, mathematics

A new approach to solving arrays of two-dimensional differential equations may allow researchers to go beyond the one-dimensional oscillator paradigm.

A frictionless pendulum and a pendulum clock behave alike, but they belong to different worlds: Hamiltonian systems and dissipative systems, respectively. In the Hamiltonian world, completely integrable—that is, solvable—systems serve as a mathematical basis for dealing with more general cases that aren’t integrable. An analogous strategy doesn’t work for nonlinear non-Hamiltonian dissipative systems, however. In that case, the best researchers can achieve is partial integrability. Until recently, it was thought that an array of globally coupled oscillators could be partially integrable only if each oscillator has only one degree of freedom. Now Rok Cestnik and Erik Martens, both at Lund University in Sweden, report on a quasi-integrable system consisting of N two-dimensional oscillators described by ordinary differential equations (ODEs) [1].

Jan 31, 2024

Data Driven Optimisation and 3D Printed Spikes From BMW Propels Winter Sports

Posted by in categories: 3D printing, information science, transportation

Performance Factors Include Spike Geometry

This technology is perfectly suited to the spike plates in bobsleigh, which, until now, was essentially off-the-shelf. 3D printing opens up entirely new possibilities. Performance factors such as geometry – where exactly the spikes placed, the number of struts and teeth, and the weight can be efficiently varied. The spike plates can be printed quickly and inexpensively, tested by athletes until the optimal result is achieved. There is no longer a standard; the efficiency of the process allows for the production of individual plates for each athlete. The ongoing optimisations are expected to be completed by the 2026 Winter Olympics. The experts are also targeting the stiffness of the plates and, consequently, the shoes because not every athlete performs best with the same shoe stiffness.

Another milestone in this journey was reached this year. Various materials for 3D printing are now available for the spikes, tested by athletes. The use of special construction software is also new. It is utilised to optimise components for vehicles as well as equipment for BMW Group production systems in terms of weight and stiffness. This software also aids engineers at the BMW Group in designing the spike plates. It allows for the rapid, automated, and, above all, individually tailored creation of the respective 3D print data. The preferred parameters of each athlete – such as geometry, stiffness, number, and shape of spikes – are automatically incorporated into the design and adapted to the individual plates, based on 3D scans of the athletes’ shoes. This algorithmic design process results in significant time savings and maximum variability.

Jan 30, 2024

Forecasting Floods: Implications of Back-to-Back Atmospheric River Events

Posted by in categories: computing, economics, information science

How can back-to-back atmospheric rivers impact the economy? This is what a recent study published in Science Advances hopes to address as a team of researchers led by Stanford University investigates the economic toll of back-to-back atmospheric rivers compared to single events. This study holds the potential to help scientists, the public, and city planners better prepare for atmospheric rivers, as they can cause widespread flooding in short periods of time.

For the study, the researchers analyzed data from the Modern-Era Retrospective Analysis for Research and Applications, version 2, (MERRA-2) between 1981 and 2021 and computer algorithms to ascertain the economic impact of atmospheric rivers throughout California. The goal was to ascertain how much worse back-to-back atmospheric rivers were compared to single events. The study’s findings discovered that back-to-back atmospheric rivers caused three times greater economic damage than single events, which is also higher when the first atmospheric river exhibits greater strength.

“Our work really shows that we need to consider the likelihood for multiple, back-to-back events for predicting damages, because damage from multiple events could be far worse than from one event alone,” said Dr. Katy Serafin, who is a coastal scientists and assistant professor in the Department of Geography at the University of Florida and a co-author on the study.

Jan 30, 2024

The Professions of the Future (1)

Posted by in categories: automation, big data, business, computing, cyborgs, disruptive technology, education, Elon Musk, employment, evolution, futurism, information science, innovation, internet, life extension, lifeboat, machine learning, posthumanism, Ray Kurzweil, robotics/AI, science, singularity, Skynet, supercomputing, transhumanism

We are witnessing a professional revolution where the boundaries between man and machine slowly fade away, giving rise to innovative collaboration.

Photo by Mateusz Kitka (Pexels)

As Artificial Intelligence (AI) continues to advance by leaps and bounds, it’s impossible to overlook the profound transformations that this technological revolution is imprinting on the professions of the future. A paradigm shift is underway, redefining not only the nature of work but also how we conceptualize collaboration between humans and machines.

As creator of the ETER9 Project (2), I perceive AI not only as a disruptive force but also as a powerful tool to shape a more efficient, innovative, and inclusive future. As we move forward in this new world, it’s crucial for each of us to contribute to building a professional environment that celebrates the interplay between humanity and technology, where the potential of AI is realized for the benefit of all.

In the ETER9 Project, dedicated to exploring the interaction between artificial intelligences and humans, I have gained unique insights into the transformative potential of AI. Reflecting on the future of professions, it’s evident that adaptability and a profound understanding of technological dynamics will be crucial to navigate this new landscape.

Continue reading “The Professions of the Future (1)” »

Jan 30, 2024

Licensing NASA Tech: Bridging Government to Commerce

Posted by in categories: biotech/medical, government, information science, robotics/AI

While NASA is well-known for advancing various technologies for the purposes of space exploration, whether it’s sending spacecraft to another world or for use onboard the International Space Station (ISS), the little-known fact is that these same technologies can be licensed for commercial use to benefit humankind right here on the Earth through NASA’s Spinoff program, which is part of NASA’s Space Technology Mission Directorate and its Technology Transfer program. This includes fields like communication, medical, weather forecasting, and even the very mattresses we sleep on, and are all featured in NASA’s annual Spinoff book, with NASA’s 2024 Spinoff book being the latest in sharing these technologies with the private sector.

“As NASA’s longest continuously running program, we continue to increase the number of technologies we license year-over-year while streamlining the development path from the government to the commercial sector,” Daniel Lockney, Technology Transfer Program Executive at NASA Headquarters, said in a statement. “These commercialization success stories continually prove the benefits of transitioning agency technologies into private hands, where the real impacts are made.”

One example is a medical-grade smartwatch called EmbracePlus developed by Empatica Inc., which uses machine learning algorithms to monitor a person’s vitals, including sleep patterns, heart rate, and oxygen flow. EmbracePlus reached mass production status in 2021 and has been approved by the U.S. Food and Drug Administration (FDA) with the goal of using the smartwatch for astronauts on future spaceflights, including the upcoming Artemis missions, along with medical patients back on Earth.

Jan 30, 2024

As AI Destroys Search Results, Google Fires Workers in Charge of Improving It

Posted by in categories: information science, robotics/AI

Amid a massive wave of tech company layoffs in favor of AI, Google is firing thousands of contractors tasked with making its namesake search engine work better.

As Vice reports, news of the company ending its contract with Appen — a data training firm that employs thousands of poorly paid gig workers in developing countries to maintain, among other things, Google’s search algorithm — coincidentally comes a week after a new study found that the quality of its search engine’s results has indeed gotten much worse in recent years.

Back in late 2022, journalist Cory Doctorow coined the term “enshittification” to refer to the demonstrable worsening of all manner of online tools, which he said was by design as tech giants seek to extract more and more money out of their user bases. Google Search was chief among the writer’s examples of the enshittification effect in a Wired article published last January, and as the new study out of Germany found, that effect can be measured.

Jan 28, 2024

Team develops a new Deepfake Detector designed to be Less Biased

Posted by in categories: computing, information science

University at Buffalo computer scientist and deepfake expert Siwei Lyu created a photo collage out of the hundreds of faces that his detection algorithms had incorrectly classified as fake—and the new composition clearly had a predominantly) darker skin tone.

“A detection algorithm’s accuracy should be statistically independent from factors like race,” Lyu says, “but obviously many existing algorithms, including our own, inherit a bias.”

Lyu, Ph.D., co-director of the UB Center for Information Integrity, and his team have now developed what they believe are the first-ever deepfake detection algorithms specifically designed to be less biased.

Jan 27, 2024

Paper page — FP6-LLM: Efficiently Serving Large Language Models Through FP6-Centric Algorithm-System Co-Design

Posted by in category: information science

Microsoft presents FP6-LLM

Efficiently serving large language models through fp6-centric algorithm-system co-design.


Join the discussion on this paper page.

Page 8 of 291First56789101112Last