Toggle light / dark theme

Forever chemicals affect your genes, according to a recent study.

Scientists have identified 11 genes that are consistently impacted by exposure to harmful chemicals that are found in everything from drinking water to food packaging.

Forever chemicals, also known as PFAS, are a global health concern. PFAS or “per-and poly-fluorinated alkyl substances” are also found in common household objects such as non-stick pans, stain or water-resistant materials as well as paints, carpets and clothes.

They are persistent in the environment and can accumulate in our bodies over time. They have been linked to a range of negative health outcomes, including impacting our genes. Some of the 11 genes that were impacted by PFAS are vital for neuronal health, and they showed altered expression levels after exposure to PFAS compounds. This discovery suggests these genes could serve as potential markers for detecting and monitoring PFAS-induced neurotoxicity.

However, the study also revealed that hundreds of other genes responded differently depending on the exact PFAS compound. While PFAS are known to accumulate in the brain due to their ability to cross the blood-brain barrier, this research provides new insights into the intricate ways these chemicals can interfere with gene expression and potentially disrupt our health. Concerns about PFAS stem from their potential health effects, which may include immune deficiency, liver cancer, and thyroid abnormalities. Due to their persistence and potential health risks, many governments are taking steps to regulate or ban the use of PFAS in various products.

Researchers have developed a new, highly effective “gene switch” to deliver targeted cell therapy.

The ETH Zurich team states that this cell therapy has the potential to offer a more precise and personalized treatment for diabetes.

Diabetes is a major global health concern, classified as a metabolic disease and affecting about one in ten individuals.

Imagine being able to speed up evolution – hypothetically – to learn which genes might have a harmful or beneficial effect on human health. Imagine, further, being able to rapidly generate new genetic sequences that could help cure disease or solve environmental challenges.

Now, scientists have developed a generative AI tool that can predict the form and function of proteins coded in the DNA of all domains of life, identify molecules that could be useful for bioengineering and medicine, and allow labs to run dozens of other standard experiments with a virtual query – in minutes or hours instead of years (or millennia).


Trained on a dataset that includes all known living species – and a few extinct ones – Evo 2 can predict the form and function of proteins in the DNA of all domains of life.

Rods of iron from God from the Moon – see why the US must beat China to the Moon for freedom, for survival.

GoldBacks from Galactic/Green Greg’s affiliate link:
https://www.defythegrid.com/goldbacks… coupon code GreenGregs for 1% off Outstanding Antioxidant for Your Health: https://shopc60.com/ Use discount code: GreenGregs10 for 10% off Inspire your kids to love science! SAVE 20% OFF New Science Kits Using Code: NEWKITSSAVE20 https://www.pntra.com/t/SENKTExNSUhDR… For gardening in your Lunar or Mars habitat GalacticGregs has teamed up with True Leaf Market http://www.pntrac.com/t/TUJGRklGSkJGT… Awesome deals for long term food supplies for those long missions to deep space (or prepping in case your spaceship crashes: See the Special Deals at My Patriot Supply: www.PrepWithGreg.com For that off-grid asteroid homestead stock up with Lemans before you blast off: https://www.pntrs.com/t/SENJR0ZOSk9DR

What exercises can future astronauts on long-term missions to the Moon or Mars conduct to help mitigate the effects of cartilage damage resulting from microgravity? This is what a recent study published in npj Microgravity hopes to address as an international team of researchers investigated the health benefits of future astronauts performing jumping workouts during long-duration space missions. This study holds the potential to help astronauts, mission planners, and the public better understand the risks and strategies for long-duration space missions, especially as human exploration expands to the Moon and Mars.

“Think about sending somebody on a trip to Mars, they get there, and they can’t walk because they developed osteoarthritis of the knees or the hips and their joints don’t function,” said Dr. Marco Chiaberge, who is a research scientist at Johns Hopkins University and lead author of the study. “Astronauts also perform spacewalks often. They serviced the Hubble Space Telescope five times, and in the future, they will need to spend more time in space and the Moon, where we will build larger telescopes to explore the universe and where they will need to stay as healthy as possible.”

For the study, the researchers conducted a nine-week study with mice to ascertain the benefits of jumping exercises three times a week compared to limited movement regarding cartilage growth and sustainability. In the end, the researchers found that not only did the mice who participated in jumping exercises exhibit a 26 percent increase in cartilage compared to 14 percent reduction for the non-movement mice, but the jumping mice also displayed 110 percent thicker cartilage. Additionally, the jumping mice were found to exhibit 15 percent greater bone mineral density due to the jumping exercises.

Mitochondrial stress disrupts insulinInsulin is a hormone produced by the pancreas, crucial for regulating blood glucose levels. It helps cells in the body absorb glucose from the bloodstream and convert it into energy or store it for future use. Insulin production and action are essential for maintaining stable blood sugar levels. In people with diabetes, the body either does not produce enough insulin (Type 1 diabetes) or cannot effectively use the insulin it does produce (Type 2 diabetes), leading to elevated levels of glucose in the blood. This can cause various health complications over time, including heart disease, kidney damage, and nerve dysfunction. Insulin therapy, where insulin is administered through injections or an insulin pump, is a common treatment for managing diabetes, particularly Type 1. The discovery of insulin in 1921 by Frederick Banting and Charles Best was a landmark in medical science, transforming diabetes from a fatal disease to a manageable condition. tabindex=0 insulin production in diabetes, but reversing the damage may restore β-cell function.

In 1978, parvovirus—then common to cats—started infecting dogs in Europe. The virus spread quickly around the globe, killing hundreds of thousands of dogs, mostly puppies—until a team of Cornell researchers led by the late Leland “Skip” Carmichael developed a vaccine, the derivatives of which are still used today.

“It was really at the time a worldwide relief, a miracle,” said Colin Parrish, interim director of the Baker Institute for Animal Health, who joined Carmichael’s lab as a graduate student in 1980 and is now senior author of a new study that continues to advance our understandings of the virus and how the vaccine works.

The paper, published Feb. 14 in Proceedings of the National Academy of Sciences, shows how host antibodies bind to parvovirus and neutralize it. The findings shed light on fundamental interactions between viruses and their hosts, and open new doors for improving current vaccines and treatments for infected animals.

MIT researchers developed a new approach for assessing predictions with a spatial dimension, like forecasting weather or mapping air pollution.

Re relying on a weather app to predict next week’s temperature. How do you know you can trust its forecast? Scientists use statistical and physical models to make predictions about everything from weather to air pollution. But checking whether these models are truly reliable is trickier than it seems—especially when the locations where we have validation data don Traditional validation methods struggle with this problem, failing to provide consistent accuracy in real-world scenarios. In this work, researchers introduce a new validation approach designed to improve trust in spatial predictions. They define a key requirement: as more validation data becomes available, the accuracy of the validation method should improve indefinitely. They show that existing methods don’t always meet this standard. Instead, they propose an approach inspired by previous work on handling differences in data distributions (known as “covariate shift”) but adapted for spatial prediction. Their method not only meets their strict validation requirement but also outperforms existing techniques in both simulations and real-world data.

By refining how we validate predictive models, this work helps ensure that critical forecasts—like air pollution levels or extreme weather events—can be trusted with greater confidence.


A new evaluation method assesses the accuracy of spatial prediction techniques, outperforming traditional methods. This could help scientists make better predictions in areas like weather forecasting, climate research, public health, and ecological management.

Summary: A new study reveals how AI-driven deep learning models can decode the genetic regulatory switches that define brain cell types across species. By analyzing human, mouse, and chicken brains, researchers found that some brain cell types remain highly conserved over 320 million years, while others have evolved uniquely.

This regulatory code not only sheds light on brain evolution but also provides new tools for studying gene regulation in health and disease. The findings highlight how AI can identify preserved and divergent genetic instructions controlling brain function across species.

The study also has implications for understanding neurological disorders by linking genetic variants to cognitive traits. Researchers are now expanding their models to study the brains of various animals and human disease states like Parkinson’s.