Toggle light / dark theme

Researchers at Indiana University have shown that an artificial intelligence framework that employs sequential decision-making could reduce healthcare costs by over 50 percent while also improving patient outcomes by over 40 percent. New research from Indiana University has found that machine lea

A new “atlas” developed by researchers at Duke University School of Medicine, University of Tennessee Health Science Center, and the University of Pittsburgh will increase precision in measuring changes in brain structure and make it easier to share results for scientists working to understand neurological diseases such as Alzheimer’s disease.

The tool, the Duke Mouse Brain Atlas, combines microscopic resolution, three-dimensional images from three different techniques to create a detailed map of the entire brain, from large structures down to and circuits.

“This is the first truly three-dimensional, stereotaxic of the mouse brain,” said G. Allan Johnson, Ph.D., Charles E. Putman University Distinguished Professor of Radiology at Duke. He is also professor in the Department of Physics and the Department of Biomedical Engineering.

An AI tool has made a step forward in translating the language proteins use to dictate whether they form sticky clumps similar to those linked to Alzheimer’s disease and around fifty other types of human disease. In a departure from typical “black-box” AI models, the new tool, CANYA, was designed to be able to explain its decisions, revealing the specific chemical patterns that drive or prevent harmful protein folding.

The discovery, published in the journal Science Advances, was possible thanks to the largest-ever dataset on protein aggregation created to date. The study gives new insights about the molecular mechanisms underpinning sticky proteins, which are linked to diseases affecting half a billion people worldwide.

Protein clumping, or amyloid aggregation, is a health hazard that disrupts normal cell function. When certain patches in proteins stick to each other, proteins grow into dense fibrous masses that have pathological consequences.

Researchers at the University Health Network (UHN) and the University of Toronto have developed a skin-based test that can detect signature features of progressive supranuclear palsy (PSP), a rare neurodegenerative disease that affects body movements, including walking, balance and swallowing.

The test, which the researchers describe in a recent issue of JAMA Neurology, could allow for more accurate and faster PSP diagnosis than current methods.

“This is important for assigning patients to the correct , but it will be even more important in the future as researchers develop targeted, precision treatments for PSP,” says Ivan Martinez-Valbuena, a scientific associate at the Rossy Progressive Supranuclear Palsy Centre at the UHN’s Krembil Brain Institute and U of T’s Tanz Centre for Research in Neurodegenerative Diseases.

Noninvasive therapy seeks to enhance focus and behavior by gently stimulating a nerve associated with attention and executive functioning. Researchers at UCLA Health are initiating the first clinical trial to determine whether a wearable device that provides gentle nerve stimulation during sleep

Leading health experts have warned that the US is staring down the barrel of another pandemic as bird flu spirals out of control on US farms.

So far, the H5N1 outbreak has affected nearly 1,000 dairy cow herds and resulted in more than 70 human cases, including the first confirmed death.

The US poultry industry is at significant risk, say experts from the Global Virus Network (GVN), particularly in areas with high-density farming and where personal protective practices may be lacking.

Those who climb indoors are doing something for their health. But climbing shoes contain chemicals of concern that can enter the lungs of climbers through the abrasion of the soles.

In a recent study, researchers from the University of Vienna and EPFL Lausanne have shown for the first time that high concentrations of potentially harmful chemicals from climbing can be found in the air of bouldering gyms. In some cases they are higher than on a busy street. The results have been published in the journal ACS ES&T Air.

A climbing hall is filled with a variety of smells: sweat, chalk dust and a hint of rubber. A research group led by environmental scientist Thilo Hofmann at the University of Vienna has now discovered that rubber abrasion from climbing shoes can enter the lungs of athletes. The shoes contain rubber compounds similar to those used in car tires—including additives suspected of being harmful to humans and the environment.