Toggle light / dark theme

Your Heart’s Secret: It Has Its Own Nervous System

Summary: New research reveals the heart has its own complex nervous system, or “mini-brain,” capable of regulating the heartbeat independently of the brain. Conducted on zebrafish, the study identified specialized neurons within the heart, including some with pacemaker properties, challenging traditional views of heartbeat control.

This discovery provides new insights into heart diseases and potential treatments for conditions like arrhythmias. Researchers aim to explore how this cardiac nervous system interacts with the brain during stress, exercise, or disease to identify novel therapeutic targets.

Identification of a novel population of neuromedin S expressing neurons in the ventral tegmental area that promote morphine-elicited behavior

New in JNeurosci: Researchers identified a new subset of neurons in mice that morphine may interact with to influence behavior. This neuron population could be a promising new opioid addiction treatment target.

▶️


Opioid use disorder constitutes a major health and economic burden, but our limited understanding of the underlying neurobiology impedes better interventions. Alteration in the activity and output of dopamine (DA) neurons in the ventral tegmental area (VTA) contributes to drug effects, but the mechanisms underlying these changes remain relatively unexplored. We used translating ribosome affinity purification and RNA sequencing to identify gene expression changes in mouse VTA DA neurons following chronic morphine exposure. We found that expression of the neuropeptide neuromedin S (Nms) is robustly increased in VTA DA neurons by morphine. Using an NMS-iCre driver line, we confirmed that a subset of VTA neurons express NMS and that chemogenetic modulation of VTA NMS neuron activity altered morphine responses in male and female mice. Specifically, VTA NMS neuronal activation promoted morphine locomotor activity while inhibition reduced morphine locomotor activity and conditioned place preference (CPP). Interestingly, these effects appear specific to morphine, as modulation of VTA NMS activity did not affect cocaine behaviors, consistent with our data that cocaine administration does not increase VTA Nms expression. Chemogenetic manipulation of VTA neurons that express glucagon-like peptide, a transcript also robustly increased in VTA DA neurons by morphine, does not alter morphine-elicited behavior, further highlighting the functional relevance of VTA NMS-expressing neurons. Together, our current data suggest that NMS-expressing neurons represent a novel subset of VTA neurons that may be functionally relevant for morphine responses and support the utility of cell type-specific analyses like TRAP to identify neuronal adaptations underlying substance use disorder.

Significance Statement The opioid epidemic remains prevalent in the U.S., with more than 70% of overdose deaths caused by opioids. The ventral tegmental area (VTA) is responsible for regulating reward behavior. Although drugs of abuse can alter VTA dopaminergic neuron function, the underlying mechanisms have yet to be fully explored. This is partially due to the cellular heterogeneity of the VTA. Here, we identify a novel subset of VTA neurons that express the neuropeptide neuromedin S (NMS). Nms expression is robustly increased by morphine and alteration of VTA NMS neuronal activity is sufficient to alter morphine-elicited behaviors. Our findings are the first to implicate NMS-expressing neurons in drug behavior and thereby improve our understanding of opioid-induced adaptations in the VTA.

Community estimate of global glacier mass changes from 2000 to 2023

Glaciers separate from the continental ice sheets in Greenland and Antarctica covered a global area of approximately 706,000 km2 around the year 200019, with an estimated total volume of 158,170 ± 41,030 km3, equivalent to a potential sea-level rise of 324 ± 84 mm (ref. 20). Glaciers are integral components of Earth’s climate and hydrologic system1. Hence, glacier monitoring is essential for understanding and assessing ongoing changes21,22, providing a basis for impact2,3,4,5,6,7,8,9,10 and modelling11,12,13 studies, and helping to track progress on limiting climate change23. The four main observation methods to derive glacier mass changes include glaciological measurements, digital elevation model (DEM) differencing, altimetry and gravimetry. Additional concepts include hybrid approaches that combine different observation methods. In situ glaciological measurements have been carried out at about 500 unevenly distributed glaciers24, representing less than 1% of Earth’s glaciers19. Glaciological time series provide seasonal-to-annual variability of glacier mass changes25. Although these are generally well correlated regionally, long-term trends of individual glaciers might not always be representative of a given region. Spaceborne observations complement in situ measurements, allowing for glacier monitoring at global scale over recent decades. Several optical and radar sensors allow the derivation of DEMs, which reflect the glacier surface topography. Repeat mapping and calculation of DEM differences provide multi-annual trends in elevation and volume changes26 for all glaciers in the world27. Similarly, laser and radar altimetry determine elevation changes along linear tracks, which can be extrapolated to calculate regional estimates of glacier elevation and volume change28. Unlike DEM differencing, altimetry provides spatially sparse observations but has a high (that is, monthly to annual) temporal resolution26. DEM differencing and altimetry require converting glacier volume to mass changes using density assumptions29. Satellite gravimetry estimates regional glacier mass changes at monthly resolution by measuring changes in Earth’s gravitational field after correcting for solid Earth and hydrological effects30,31. Although satellite gravimetry provides high temporal resolution and direct estimates of mass, it has a spatial resolution of a few hundred kilometres, which is several orders of magnitude lower than DEM differencing or altimetry26.

The heterogeneity of these observation methods in terms of spatial, temporal and observational characteristics, the diversity of approaches within a given method, and the lack of homogenization challenged past assessments of glacier mass changes. In the Intergovernmental Panel on Climate Change (IPCC)’s Sixth Assessment Report (AR6)16, for example, glacier mass changes for the period from 2000 to 2019 relied on DEM differencing from a limited number of global27 and regional studies16. Results from a combination of glaciological and DEM differencing25 as well as from gravimetry30 were used for comparison only. The report calculated regional estimates over a specific baseline period (2000–2019) and as mean mass-change rates based on selected studies per region, which only partly considered the strengths and limitations of the different observation methods.

The spread of reported results—many outside uncertainty margins—and recent updates from different observation methods afford an opportunity to assess regional and global glacier mass loss with a community-led effort. Within the Glacier Mass Balance Intercomparison Exercise (GlaMBIE; https://glambie.org), we collected, homogenized and combined regional results from the observation methods described above to yield a global assessment towards the upcoming IPCC reports of the seventh assessment cycle. At the same time, GlaMBIE provides insights into regional trends and interannual variabilities, quantifies the differences among observation methods, tracks observations within the range of projections, and delivers a refined observational baseline for future impact and modelling studies.

CARTA: The Biology of Hatred: Why Love Turns to Hatred and What We Can Do About It

Ancient texts warn of love turning into hatred, as seen in stories like Cain and Abel or “Et tu, Brute?” This talk explores the neurobiology of hatred based on the biology of love: the oxytocin system, attachment networks, and biobehavioral synchrony, which mature through mother-infant bonding and later support group solidarity and out-group hostility. Using this model, we developed Tools of Dialogue© for Israeli and Palestinian youth. After 8 sessions, participants showed reduced hostility, increased empathy, hormonal changes (lower cortisol, higher oxytocin), and lasting attitudes of compromise. Seven years later, these changes supported their peacebuilding efforts, showing how social synchrony can transform hatred into reciprocity and cooperation. Recorded on 02/14/2025. [Show ID: 40386]

Donate to UCTV to support informative & inspiring programming:
https://www.uctv.tv/donate.

Learn more about anthropogeny on CARTA’s website:
https://carta.anthropogeny.org/

Explore More Humanities on UCTV
(https://www.uctv.tv/humanities)
The humanities encourage us to think creatively and explore questions about our world. UCTV explores human culture through literature, history, ethics, philosophy, cinema and religion so we can better understand the human experience.

Explore More Science & Technology on UCTV
(https://www.uctv.tv/science)
Science and technology continue to change our lives. University of California scientists are tackling the important questions like climate change, evolution, oceanography, neuroscience and the potential of stem cells.

UCTV is the broadcast and online media platform of the University of California, featuring programming from its ten campuses, three national labs and affiliated research institutions. UCTV explores a broad spectrum of subjects for a general audience, including science, health and medicine, public affairs, humanities, arts and music, business, education, and agriculture. Launched in January 2000, UCTV embraces the core missions of the University of California — teaching, research, and public service – by providing quality, in-depth television far beyond the campus borders to inquisitive viewers around the world.

“Forever Chemicals” Called PFAS Show Up in Your Food, Clothes, and Home

Forever chemicals affect your genes, according to a recent study.

Scientists have identified 11 genes that are consistently impacted by exposure to harmful chemicals that are found in everything from drinking water to food packaging.

Forever chemicals, also known as PFAS, are a global health concern. PFAS or “per-and poly-fluorinated alkyl substances” are also found in common household objects such as non-stick pans, stain or water-resistant materials as well as paints, carpets and clothes.

They are persistent in the environment and can accumulate in our bodies over time. They have been linked to a range of negative health outcomes, including impacting our genes. Some of the 11 genes that were impacted by PFAS are vital for neuronal health, and they showed altered expression levels after exposure to PFAS compounds. This discovery suggests these genes could serve as potential markers for detecting and monitoring PFAS-induced neurotoxicity.

However, the study also revealed that hundreds of other genes responded differently depending on the exact PFAS compound. While PFAS are known to accumulate in the brain due to their ability to cross the blood-brain barrier, this research provides new insights into the intricate ways these chemicals can interfere with gene expression and potentially disrupt our health. Concerns about PFAS stem from their potential health effects, which may include immune deficiency, liver cancer, and thyroid abnormalities. Due to their persistence and potential health risks, many governments are taking steps to regulate or ban the use of PFAS in various products.


These toxic chemicals are so common in consumer products and manufacturing that they’re everywhere—including inside our bodies.

Scientists create ‘gene switch’ to power cell therapy for diabetes

Researchers have developed a new, highly effective “gene switch” to deliver targeted cell therapy.

The ETH Zurich team states that this cell therapy has the potential to offer a more precise and personalized treatment for diabetes.

Diabetes is a major global health concern, classified as a metabolic disease and affecting about one in ten individuals.

Generative AI tool marks a milestone in biology

Imagine being able to speed up evolution – hypothetically – to learn which genes might have a harmful or beneficial effect on human health. Imagine, further, being able to rapidly generate new genetic sequences that could help cure disease or solve environmental challenges.

Now, scientists have developed a generative AI tool that can predict the form and function of proteins coded in the DNA of all domains of life, identify molecules that could be useful for bioengineering and medicine, and allow labs to run dozens of other standard experiments with a virtual query – in minutes or hours instead of years (or millennia).


Trained on a dataset that includes all known living species – and a few extinct ones – Evo 2 can predict the form and function of proteins in the DNA of all domains of life.

We Must Beat China to the Moon for the Sake of All Mankind

Rods of iron from God from the Moon – see why the US must beat China to the Moon for freedom, for survival.

GoldBacks from Galactic/Green Greg’s affiliate link:
https://www.defythegrid.com/goldbacks… coupon code GreenGregs for 1% off Outstanding Antioxidant for Your Health: https://shopc60.com/ Use discount code: GreenGregs10 for 10% off Inspire your kids to love science! SAVE 20% OFF New Science Kits Using Code: NEWKITSSAVE20 https://www.pntra.com/t/SENKTExNSUhDR… For gardening in your Lunar or Mars habitat GalacticGregs has teamed up with True Leaf Market http://www.pntrac.com/t/TUJGRklGSkJGT… Awesome deals for long term food supplies for those long missions to deep space (or prepping in case your spaceship crashes: See the Special Deals at My Patriot Supply: www.PrepWithGreg.com For that off-grid asteroid homestead stock up with Lemans before you blast off: https://www.pntrs.com/t/SENJR0ZOSk9DR

Jump-Based Training May Combat Cartilage Breakdown in Space

What exercises can future astronauts on long-term missions to the Moon or Mars conduct to help mitigate the effects of cartilage damage resulting from microgravity? This is what a recent study published in npj Microgravity hopes to address as an international team of researchers investigated the health benefits of future astronauts performing jumping workouts during long-duration space missions. This study holds the potential to help astronauts, mission planners, and the public better understand the risks and strategies for long-duration space missions, especially as human exploration expands to the Moon and Mars.

“Think about sending somebody on a trip to Mars, they get there, and they can’t walk because they developed osteoarthritis of the knees or the hips and their joints don’t function,” said Dr. Marco Chiaberge, who is a research scientist at Johns Hopkins University and lead author of the study. “Astronauts also perform spacewalks often. They serviced the Hubble Space Telescope five times, and in the future, they will need to spend more time in space and the Moon, where we will build larger telescopes to explore the universe and where they will need to stay as healthy as possible.”

For the study, the researchers conducted a nine-week study with mice to ascertain the benefits of jumping exercises three times a week compared to limited movement regarding cartilage growth and sustainability. In the end, the researchers found that not only did the mice who participated in jumping exercises exhibit a 26 percent increase in cartilage compared to 14 percent reduction for the non-movement mice, but the jumping mice also displayed 110 percent thicker cartilage. Additionally, the jumping mice were found to exhibit 15 percent greater bone mineral density due to the jumping exercises.