Toggle light / dark theme

Yesterday, a report came from a tech company in Asia that they are proposing to do Quantum teleporting on humans. So, we have that camp; today we have the other camp with this article stating to do so means death. Personally, I have my doubts around humans or animals of any sort being able to teleport like Star Trek; great concept. However, to do so means breaking down your make up into particles and hopefully without killing you, the particles transport and reassemble themselves and everything remains healthy and functioning. Wish the test subjects all the best.


Remember last week’s video about the trouble with Star Trek’s transporter (a.k.a. a “suicide box”) by CGP Grey, delving into whether the teleported version of yourself would really be, well, you? Henry Reich of Minute Physics has posted a video response with his own resolution to the logical paradox.

You know what means… NERD FIGHT!

LONDON & MIAMI–()–Blue Prism, the pioneering developer of enterprise Robotic Process Automation (RPA) software, today announced its debut on AIM of the London Stock Exchange (LSE). The first developer of software robots to trade on the public markets, Blue Prism, working closely with its global network of partners, grew 35% last year and has deployments with more than 74 customers, including a number of the world’s largest banks, insurers, utilities, healthcare, telecommunications, service providers and other regulated industries. The initial public offering (IPO) will allow Blue Prism to support its global growth plans and enhance its profile within the RPA marketplace.

“Today’s milestone follows a successful year for the company, and marks a shift in acceptance for software robots as a mainstream choice for the enterprise digital workforce,” said Alastair Bathgate, co-founder and CEO of Blue Prism. “Software robots have been deployed successfully and strategically by large, blue chip organizations that have derived tremendous value from this new solution to the labor market, it’s not science fiction.”

Read more

Finally there’s a use for dog drool: this spring, a new startup called Embark plans to launch a DNA testing kit for dogs that will tell owners about their canine’s ancestry, and disease risk. That’s not all the founders have in mind though; they may be aiming at human diseases by enlisting our longtime best friends.

Soon, interested pooch lovers will be able to swab their dogs’ slimy cheeks and mail in the sample. By extracting DNA from the swab, Embark’s founder says they’ll be able to trace a dog’s ancestry on a global level. The “Embark Dog DNA Test Kit” will also look for genetic variants that are associated with more than 100 diseases, and inform owners if their dog has a higher than average chance of developing one of them. The kit will also tell owners if their dog is likely to pass disease-associated mutations to a pup — which will likely be valuable information for breeders. Because of this, Embark’s founders say their product will be the most complete kit of its kind. At least, that’s the idea that Embark’s founders will be pitching today at SXSW.

For the company’s founders, the real objective will be the research they’ll be able to conduct with the DNA samples; that became clear when I spoke to two of Embark’s founders on the phone last week. They spent the first 10 minutes of the call talking about the potential of dog genetics to deliver advancements in human health. In fact, they were so enthusiastic about their future research that I had to interrupt them to steer the conversation back to the product we were supposed to discuss.

Read more

CHAMPAIGN, Ill. — A new class of miniature biological robots, or bio-bots, has seen the light — and is following where the light shines.

The bio-bots are powered by muscle cells that have been genetically engineered to respond to light, giving researchers control over the bots’ motion, a key step toward their use in applications for health, sensing and the environment. Led by Rashid Bashir, the University of Illinois head of bioengineering, the researchers published their results in the Proceedings of the National Academy of Sciences.

“Light is a noninvasive way to control these machines,” Bashir said. “It gives us flexibility in the design and the motion. The bottom line of what we are trying to accomplish is the forward design of biological systems, and we think the light control is an important step toward that.”

Read more

SENS has kindly commented about MMTP and the impact our research should have on aging. We launch a fundraiser in April to test senolytics (ApoptoSENS) with a planned follow up to combine this with stem cell therapy (RepleniSENS). It is time to put the engineering approach to aging to the test!


Some drugs tested have been found to increase mouse lifespan such as Metformin and Rapamycin for example and are considered for human testing. Many more substances have never been tested and we do not know if they might extend healthy lifespan.

Read more

Another data scientist with pragmatic thinking which is badly needed today. Keeping it real with Una-May O’Reilly.


Mumbai: Una-May O’Reilly, principal research scientist at Anyscale Learning For All (ALFA) group at the Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory, has expertise in scalable machine learning, evolutionary algorithms, and frameworks for large-scale, automated knowledge mining, prediction and analytics. O’Reilly is one of the keynote speakers at the two-day EmTech India 2016 event, to be held in New Delhi on 18 March.

In an email interview, she spoke, among other things, about how machine learning underpins data-driven artificial intelligence (AI), giving the ability to predict complex events from predictive cues within streams of data. Edited excerpts:

When you say that the ALFA group aims at solving the most challenging Big Data problems—questions that go beyond the scope of typical analytics—what do you exactly mean?

Wearables and other connected devices have been available to help treat chronic conditions like asthma and heart disease for a while now. But thus far, the nation’s 30 million diabetics haven’t seen much to help them improve their health or reduce the daily grind of finger pricks and needle pokes.

The $2.5 billion connected-care industry may be off to a late start in diabetes, but it’s making up for lost time. A new breed of connected glucometers, insulin pumps and smartphone apps is hitting the market. They promise to make it easier for diabetics to manage the slow-progressing disease and keep them motivated with feedback and support. In as little as two years, the industry plans to take charge of the entire uncomfortable, time-consuming routine of checking and regulating blood-sugar levels with something called an artificial pancreas. Such systems mimic the functions of a healthy pancreas by blending continuous glucose monitoring, remote-controlled insulin pumps and artificial intelligence to maintain healthy blood-sugar levels automatically.

For Jeroen Tas, CEO of Philips’ Connected Care and Health Informatics unit, diabetes management is also personal: his daughter Kim is diabetic.

Read more

New funding awarded by DARPA on new spinal implants; this should make some commercial pilots that I know happy.


Carmel, IN-based startup Nanovis is no stranger to nabbing research grants. It’s just nabbed one from the National Institutes of Health for preclinical research on the use of its porous Forticore interbody fusion devices in combination with nanotube technology. The combination is expected to result in a surface that mimics nature and encourages regeneration around an implant.

Nanovis has previously gotten 8 competitive peer-reviewed grants from the NIH and other research organizations; this is its second NIH grant. In September 2014, it got FDA clearance for its FortiCore interbody fusion devices and then last October it launched an expanded FortiCore line.

“Gaining the attention and support of the NIH for Nanovis’ technology platforms and research is gratifying,” said Nanovis CEO Matt Hedrick in a statement. “Our deeply porous FortiCore interbody fusion device are increasingly being adopted by leading surgeons and hospital networks driving accelerated company growth. As we progress forward, we continue to invest in the fundamental science at the core of our uniquely differentiated technologies. Grants from the NIH help us continue to discover potential applications to improve the future of healthcare.”