Toggle light / dark theme

Blended Reality is a versatile concept that can be extended from the physical and digital worlds to the chemical and biological world. In the convergence of healthcare diagnostics and digital health, it can play a fundamental role: the transformation of human biology, real-world parameters into digital data to obtain contextual health information and enable personalized drug treatments. The fusion of microfluidics, edge computing and commercial mobility with diagnostics, digital health, big data, precision medicine, and theranostics will disrupt existing, established structures in our healthcare system. This will allow new models of partnerships among technology and pharmaceutical industries (see fig. 1).

From the very beginning of mankind, healthcare was purely empirical and mostly a combination of empirical and spiritual skills. While access to cures was exclusive and very limited, the success rate was not very high in most cases. During the Renaissance a systematic exploration of natural phenomena and physiology laid the scientific foundation of modern medicine. A real breakthrough in quality and access to healthcare services has taken place in the past 150 years as an aftermath of the Industrial Revolution. It brought significant advances in science as well as societal changes: expanding government-granted access to the establishing working classes as the main human capital of the industrialization process in the Western Hemisphere. Keeping a business employees healthy became an indispensable prerequisite to increasing the national economic output and well-being on a societal level.

Read more

http://democracynow.org — A new article in the medical journal The Lancet has concluded much of the Northern Hemisphere will be too hot by 2085 to host the Summer Olympics. Researchers are projecting only eight cities in the hemisphere outside of Western Europe would be cool enough to host the Games. This includes just three cities in North America: Calgary, Vancouver and San Francisco. The list of cities where it could be too hot is staggering: Istanbul, Madrid, Rome, Paris, Budapest, Tokyo, New York, Chicago, Los Angeles—and the list goes on. Extreme high temperatures have already impacted the athletic world. In 2007, high heat forced the cancellation of the Chicago Marathon. At this year’s U.S. Olympic marathon trials in Los Angeles, 30 percent of the runners dropped out of the race due to the heat. For more, we speak with Kirk Smith, lead author of the article and professor of global environmental health at the University of California, Berkeley.

Democracy Now! is an independent global news hour that airs weekdays on nearly 1,400 TV and radio stations Monday through Friday. Watch our livestream 8-9AM ET: http://democracynow.org

Please consider supporting independent media by making a donation to Democracy Now! today: http://democracynow.org/donate

FOLLOW DEMOCRACY NOW! ONLINE:
Facebook: http://facebook.com/democracynow

Twitter: https://twitter.com/democracynow

YouTube: http://youtube.com/democracynow

Imagine this scenario: Annual physical examinations are supplemented by an affordable home diagnostic chip, allowing you to regularly monitor your baseline health with just a simple urine sample. Though outwardly you appear to be in good health, the device reveals a fluctuation in your biomarker profile, indicating the possible emergence of early stage cancer development or presence of a virus.

Diagnostic devices like a home pregnancy test have been around since the 1970s. It revolutionized a woman’s ability to find out if she was pregnant without having to wait for a doctor’s appointment to confirm her suspicions. The test relies on detecting a hormone, human chorionic gonadotropin, present in urine. But could detecting cancer, or a deadly virus, from a similar kind of sample and device be as simple and non-invasive?

Read more

Researchers estimate that driverless cars could, by midcentury, reduce traffic fatalities by up to 90 percent. Which means that, using the number of fatalities in 2013 as a baseline, self-driving cars could save 29,447 lives a year. In the United States alone, that’s nearly 300,000 fatalities prevented over the course of a decade, and 1.5 million lives saved in a half-century. For context: Anti-smoking efforts saved 8 million lives in the United States over a 50-year period.

The life-saving estimates for driverless cars are on par with the efficacy of modern vaccines, which save 42,000 lives for each U.S. birth cohort, according to the Centers for Disease Control.

Globally, there are about 1.2 million traffic fatalities annually, according to the World Health Organization. Which means driverless cars are poised to save 10 million lives per decade—and 50 million lives around the world in half a century.

Read more

In Greek mythology, the Chimera is a monster that is part lion, part goat and part snake. Far from reality, sure, but the idea of mixing and matching creatures is real — and has ethicists concerned.

That’s because last week, the National Institutes of Health proposed a new policy to allow funding for scientists who are creating chimeras — the non-mythological kind. In genetics, chimeras are organisms formed when human stem cells are combined with tissues of other animals, with the potential for creating human-animal hybrids.

Pablo Ross of the University of California, Davis, inserts human stem cells into a pig embryo as part of experiments to create chimeric embryos.

Read more

With only 9 days left on the SENS cancer fundraiser here is an article from Fightaging! that explains why finding novel solutions to treating cancer is critical in the roadmap to longer healthier lives.


This year’s SENS rejuvenation research crowdfunding event puts the spotlight on the SENS Research Foundation’s cancer program. So far more than 300 people have donated, and more than $26,000 has been raised; with ten days left to go, it won’t take that much more of an effort to reach the same number of donors and the same level of support given to last year’s fundraiser, and which led to the success in that research program. As for all of the SENS research initiatives in the science of aging, the SENS Research Foundation’s work on cancer aims to support a big, bold goal in medicine: to build a single type of therapy that can be used to effectively treat all forms of cancer. When achieved, that will greatly increase the pace of progress towards control of cancer, the goal of finally ending cancer as a threat to health. At present the cancer research community spends much of its time and funding on approaches that are highly specific to only one or only a few of the hundred of subtypes of cancer. That is no way to win any time soon, as even with the vast funding devoted to cancer research, there are just too many forms of cancer and too few researchers. What is needed is to change the strategy, to focus on approaches to the treatment of cancer that are no more expensive to develop, but that far more patients can benefit from.

The most promising approach to a universal cancer therapy is to block telomere lengthening in cancerous tissues. Telomeres are a part of the mechanism that limits cell division in all human cells other than stem cells, repeating DNA sequences at the ends of chromosomes that shorten every time a cell divides. In order to achieve unfettered growth all cancers must bypass this limit by continually lengthening their telomeres, a goal that is achieved through mutations that allow cancer cells to use telomerase or the alternative lengthening of telomeres (ALT) processes. If both telomerase and ALT can be blocked in cancer tissue, then the cancer will wither; this is such a fundamental piece of cellular machinery that there is no expectation that cancer cells could find a way around it. Block only one of these two methods of telomere lengthening, however, and the cancer will probably switch to use the other. This has been observed in mice.

Thus it is very important that the research community deploy both telomerase and ALT blockades as a part of a prospective universal cancer therapy. Unfortunately while a number of groups are working on telomerase interdiction, and telomerase is very well studied these days, ALT is still poorly characterized, at the frontiers of what is known of cell biology. ALT doesn’t occur in normal cells, and thus despite the fact that 10% of cancers make use of it, only recently have the necessary tools been developed to work towards understanding and intervention. The SENS Research Foundation is picking up the slack in this overlooked area of development, and with our support is working towards ensuring that the first universal cancer therapies can in fact target both telomerase and ALT, and therefore succeed.

Read more

The main goal of a tumour cell is, above all, to survive, even at the cost of damaging the health of the organism to which it belongs.

To do this, it is equipped with skills that healthy cells do not have, including the ability to continue surviving when glucose levels are very low.

This could be one of the reasons why widely-used anti-angiogenic agents often fail to eliminate cancer, no matter how much they starve it by hindering the development of the blood vessels that provide nutrients in general and glucose in particular.

Read more

Posting for the friends who hasn’t heard about the US funding the new program to grow half human and half animal embryos. Part of the goal is to enable organs to be made available for transplants, etc…


The federal government is planning to lift a moratorium on funding of controversial experiments that use human stem cells to create animal embryos that are partly human.

The National Institutes of Health has unveiled a new policy to permit scientists to get federal money to make the embryos, known as chimeras, under certain carefully monitored conditions.

The NIH imposed a moratorium on funding these experiments in September because they could raise ethical concerns.

Read more