Toggle light / dark theme

Light Therapy Helps Veterans Treated for Traumatic Brain Injury

Summary: Morning bright light therapy improved both physical and mental health symptoms, including cognitive function and sleep quality, in veterans who suffered TBI.

Source: Experimental Biology.

A new study by researchers at the VA Portland Health Care System in Oregon found that augmenting traditional treatment for traumatic brain injury (TBI) with morning bright light therapy (MBLT) improved physical and mental symptoms for participants.

A milestone in muscular dystrophy therapy

Muscle stem cells enable our muscle to build up and regenerate over a lifetime through exercise. But if certain muscle genes are mutated, the opposite occurs. In patients suffering from muscular dystrophy, the skeletal muscle already starts to weaken in childhood. Suddenly, these children are no longer able to run, play the piano or climb the stairs, and often they are dependent on a wheelchair by the age of 15. Currently, no therapy for this condition exists.

“Now, we are able to access these patients’ gene mutations using CRISPR-Cas9 technology,” explains Professor Simone Spuler, head of the Myology Lab at the Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité — Universitätsmedizin Berlin. “We care for more than 2000 patients at the Charité outpatient clinic for muscle disorders, and quickly recognized the potential of the new technology.” The researchers immediately started working with some of the affected families, and have now presented their results in the journal JCI Insight. In the families studied, the parents were healthy and had no idea they possessed a mutated gene. The children all inherited a copy of the disease mutation from both parents.

AI Challenges For The Health IT Industry: Should We Expect Electronic Doctors?

Yes, but they wont be trusted til 2035.


Current trends in AI use in healthcare lead me to posit that this market will significantly grow in the coming years. So, should leaders in healthcare expect the emergence of a fully automated electronic physician, sonographer or surgeon as a replacement for the human healthcare professional? Can the development of AI in healthcare help overcome the difficulties the industry faces today? To figure all this out, I would like to analyze the current challenges of using AI in healthcare.

Let’s discuss two promising examples: the application of AI in diagnosis and reading images, and the use of robotic systems in surgery.

Diagnostic Robots: Accuracy And Use For Treatment Recommendations

The success of AI in diagnosing is confirmed by the results of its application in a number of medical studies — for example, in optical coherence tomography (OCT), which requires serious qualifications. Google’s AI-based DeepMind Health system, for instance, demonstrates 94% accuracy of diagnoses for over 50 types of eye diseases in an early trial. Nevertheless, the system operates in conjunction with human experts.

GFS 2020 — Aubrey de Grey — Rejuvenation Biotechnology: why age may soon cease to mean aging

Between 19:39 and 24 minutes we have Aubrey giving a list of companies and stating that investing is now taking off. Project 21 seems to be on track to start next year, and therapies available in 10–15 years will add 30 years to life and really be indefinite beyond that.


Rejuvenation Biotechnology: why age may soon cease to mean aging.
People are living longer — no longer because of reduced child mortality, but because we are postponing the ill-health of old age. But we’ve seen nothing yet: regenerative medicine and other new medicines will eventually be so comprehensive that people will stay truly youthful however long they live, which means they may mostly live very long indeed.

Dr. Aubrey de Grey discuss both the biology and the sociology of what will be the most momentous advance in the history of civilisation.

The Global Foresight Summit is a not-for-profit virtual conference with the goal of increasing futures literacy, breaking thinking silos and raising awareness in futures intelligence, strategic foresight, and futures thinking.

It was started in March 2020 during the COVID-19 pandemic lockdowns by FFWD, a global Futures Intelligence & Strategic Foresight consultancy, as a pro-bono initiative to help educate people around the globe during that time of global confinement.

Jennifer Huse — Innovative Scientific Solutions For Revitalizing Camden, NJ, USA — Mayoral Candidate

Innovative, Scientific, And Empathic Solutions For Revitalizing Camden, NJ, USA — Jennifer A. Huse, Mayoral Candidate, 2021


Jennifer Huse is a candidate for Mayor of Camden, New Jersey, USA, running in the upcoming 2021 election, as an independent.

Information on Jennifer’s campaign can be found at — https://www.jahformayor.com/

Jennifer has a background and education in Cell and Molecular Biology, Exercise Science, Social Media Management, Communications, Marketing and Business Management, and her diverse background, gives a unique perspective when it comes to her ideas for the future improvement of the city.

A key pillar of Jennifer’s platform is in testing and advancing novel solutions for improving current social systems and introducing new technologies via a model called The Center for Scientific Solutions.

Farming Robot Kills 100,000 Weeds per Hour With Lasers

A person can weed about one acre of crops a day. This smart robot can weed 20.


Carbon Robotics has unveiled the third-generation of its Autonomous Weeder, a smart farming robot that identifies weeds and then destroys them with high-power lasers.

The weedkiller challenge: Weeds compete with plants for space, sunlight, and soil nutrients. They can also make it easier for insect pests to harm crops, so weed control is a top concern for farmers.

Chemical herbicides can kill the pesky plants, but they can also contaminate water and affect soil health. Weeds can be pulled out by hand, but it’s unpleasant work, and labor shortages are already a huge problem in the agriculture industry.

Study: ‘Fingerprint’ for 3D printer accurate 92% of time

3D printing is transforming everything from fashion and health care to transportation and toys. But this rapidly evolving technology, also known as additive manufacturing, can threaten national security and intellectual property rights.

To reduce illicit use of 3D printers, Zhanpeng Jin, Ph.D., associate professor in the Department of Computer Science and Engineering at the University at Buffalo, is developing a way to track the origin of 3D-printed items.

His concern was that, as long as people have the digital design for an item, which can be downloaded from the internet, sometimes as open-source material, people can print out anything they want, which can range from computer parts and toys to fully functional handguns and assault rifles.

Researchers develop ultrathin, self-powered e-health patches that can monitor a user’s pulse and blood pressure

Scientists at Osaka University, in cooperation with Joanneum Research (Weiz, Austria), have developed wireless health monitoring patches that use embedded piezoelectric nanogenerators to power themselves with harvested biomechanical energy. This work may lead to new autonomous health sensors as well as battery-free wearable electronic devices.

As wearable technology and smart sensors become increasingly popular, the problem of providing power to all of these devices become more relevant. While the energy requirements of each component may be modest, the need for wires or even batteries become burdensome and inconvenient. That is why new energy harvesting methods are needed. Also, the ability for integrated health monitors to use ambient motion to both power and activate sensors will help accelerate their adoption in doctor’s offices.

Now, an international team of researchers from Japan and Austria has invented new ultraflexible patches with a ferroelectric polymer that can not only sense a patient’s pulse and blood pressure, but also power themselves from normal movements. The key was starting with a substrate just one micron thick. Using a strong electric field, ferroelectric crystalline domains in a copolymer were aligned so that the sample had a large electric dipole moment. Based on the piezoelectric effect, which is very efficient in converting natural motion into small electric voltages, the device responds rapidly to strain or pressure changes. These voltages can be transduced either into signals for the medical or to directly harvest the energy. “Our e-health patches may be employed as part of screening for lifestyle-related diseases such as heart disorders, signs of stress, and sleep apnea,” first-author Andreas Petritz says.