Toggle light / dark theme

Scientists identify novel mechanism that links genetic defect in IBD patients to gut leakiness

The cumulative effect of reduced PTPN2 activity on both mechanisms was an elevated fluid loss. The researchers proved this defect could be reversed by treating cells lacking PTPN2 with recombinant -; or synthetic -; matriptase.


A team of researchers led by a biomedical scientist at the University of California, Riverside, has identified a novel mechanism by which loss-of-function mutations in the gene PTPN2, found in many patients with inflammatory bowel disease, or IBD, affect how intestinal epithelial cells maintain a barrier.

The intestinal epithelium, a single layer of cells, plays a critical role in human health by providing a barrier while also allowing nutrient and water absorption. Intestinal epithelial cells are needed for regulating immune function, communicating with the intestinal microbiota, and protecting the gut from pathogen infection -; all of which critically depend on an intact epithelial barrier.

Affecting roughly 3 million Americans, IBD is a set of chronic intestinal diseases in which the lining of the gut becomes inflamed and leaky. Increased gut leakiness has recently been confirmed to increase the risk of developing IBD.

Drugs to use, avoid when treating COVID-19: Top health system physicians weigh in

More than 18 months into the COVID-19 pandemic, there are still very few drugs authorized by the FDA to treat the virus. Just one drug, remdesivir, has gained full FDA approval as a treatment for COVID-19.

Becker’s asked physicians from top health systems which medications they’re using most frequently to treat their COVID-19 patients, which they’re avoiding and which have been most effective.

Graphene made with lasers for wearable health devices

Graphene, hexagonally arranged carbon atoms in a single layer with superior pliability and high conductivity, could advance flexible electronics according to a Penn State-led international research team. Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in Penn State’s Department of Engineering Science and Mechanics (ESM), heads the collaboration, which recently published two studies that could inform research and development of future motion detection, tactile sensing and health monitoring devices.

Investigating how laser processing affects graphene form and function

Several substances can be converted into carbon to create graphene through . Called laser-induced graphene (LIG), the resulting product can have specific properties determined by the original material. The team tested this process and published their results in SCIENCE CHINA Technological Sciences.

Two senior FDA vaccine leaders step down as agency faces decision on boosters

Two senior leaders in the US Food and Drug Administration’s vaccine review office are stepping down, even as the agency works toward high-profile decisions around Covid-19 vaccine approvals, authorizations for younger children and booster shots.

The retirements of Dr. Marion Gruber, director of the Office of Vaccines Research and Review at FDA’s Center for Biologics Evaluation and Research, and Dr. Philip Krause, deputy director of the office, were announced in an internal agency email sent on Tuesday and shared with CNN by the FDA.

In the email, CBER Director Dr. Peter Marks said Gruber will retire on October 31 and Krause is leaving in November. Marks thanked Gruber for her leadership throughout efforts to authorize and approve Covid-19 vaccines, and Krause for serving in a “key role in our interactions to address critical vaccine-related issues with our public health counterparts around the world.”

New gene therapies may soon treat dozens of rare diseases, but million-dollar price tags will put them out of reach for many

Why not eradicate disease for everyone?


Zolgensma – which treats spinal muscular atrophy, a rare genetic disease that damages nerve cells, leading to muscle decay – is currently the most expensive drug in the world. A one-time treatment of the life-saving drug for a young child costs US$2.1 million.

While Zolgensma’s exorbitant price is an outlier today, by the end of the decade there’ll be dozens of cell and gene therapies, costing hundreds of thousands to millions of dollars for a single dose. The Food and Drug Administration predicts that by2025it will be approving 10 to 20 cell and gene therapies every year.

I’m a biotechnology and policy expert focused on improving access to cell and gene therapies. While these forthcoming treatments have the potential to save many lives and ease much suffering, health care systems around the world aren’t equipped to handle them. Creative new payment systems will be necessary to ensure everyone has equal access to these therapies.

Researchers discover way to switch on and speed up tendon healing

The study investigated whether electrical therapy, coupled with exercise, would show promise in treating tendon disease or ruptures. It showed that tendon cell function and repair can be controlled through electrical stimulation from an implantable device which is powered by body movement.


Researchers at CÚRAM, the SFI Research Centre for Medical Devices based at NUI Galway, have shown how the simple act of walking can power an implantable stimulator device to speed up treatment of musculoskeletal diseases.

The results of have been published in the prestigious journal Advanced Materials.

The research establishes the engineering foundations for a new range of stimulator devices that enable control of musculoskeletal tissue regeneration to treat tendon damage and disease and sports injuries, without the use of drugs or external stimulation.

NIH launches study of extra COVID-19 vaccine dose in people with autoimmune disease

Trial also will test pausing immunosuppressive medication to improve antibody response.

The National Institutes of Health has begun a clinical trial to assess the antibody response to an extra dose of an authorized or approved COVID-19 vaccine in people with autoimmune disease who did not respond to an original COVID-19 vaccine regimen. The trial also will investigate whether pausing immunosuppressive therapy for autoimmune disease improves the antibody response to an extra dose of a COVID-19 vaccine in this population. The Phase 2 trial is sponsored and funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of NIH, and is being conducted by the NIAID-funded Autoimmunity Centers of Excellence.

“Many people who have an autoimmune disease that requires immunosuppressive therapy have had a poor immune response to the authorized and approved COVID-19 vaccines, placing these individuals at high risk for the disease,” said NIAID Director Anthony S. Fauci, M.D. “We are determined to find ways to elicit a protective immune response to the vaccines in this population. This new study is an important step in that direction.”

ARROW, a reconfigurable fiber optics network, aims to take on the end of Moore’s law

Wide Area Networks (WANs), the global backbones and workhorses of today’s internet that connect billions of computers over continents and oceans, are the foundation of modern online services. As COVID-19 has placed a vital reliance on online services, today’s networks are struggling to deliver high bandwidth and availability imposed by emerging workloads related to machine learning, video calls, and health care.

To connect WANs over hundreds of miles, fiber optic cables that transmit data using light are threaded throughout our neighborhoods, made of incredibly thin strands of glass or plastic known as optical fibers. While they’re extremely fast, they’re not always reliable: They can easily break from weather, thunderstorms, accidents, and even animals. These tears can cause severe and expensive damage, resulting in 911 service outages, lost connectivity to the internet, and inability to use smartphone apps.

Scientists from the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and from Facebook recently came up with a way to preserve the network when the fiber is down, and to reduce cost. Their system, called ARROW, reconfigures the optical light from a damaged fiber to healthy ones, while using an online algorithm to proactively plan for potential fiber cuts ahead of time, based on real-time internet traffic demands.

5 Things Big Pharma Can Expect from the 2020s / Episode 13 — The Medical Futurist

The global revenue of the pharmaceutical market is 1.2 trillion dollars. With such capital at stake and with the pace of technological disruption, the pharma industry has to embrace new technologies, therapies, and innovations and put a greater focus on prevention and digital health.

In this video, we take a dive into the five trends of how big pharma will adapt to these changing times:

1. Artificial intelligence for drug research and development.
2. Patient design — DIY medicine movements.
3. In silico trials to bypass in vivo clinical testing.
4. New technologies, such as blockchain, in the supply chain.
5. New drug strategies by big pharma companies.

Get access to exclusive content and express your support for The Medical Futurist by joining our Patreon community: https://www.patreon.com/themedicalfuturist.

Read our magazine for further updates and analyses on the future of healthcare:
https://medicalfuturist.com/magazine.

#pharmaceutics #digitalhealth #pharma

Which Gut Bacteria Are Associated With Poor Health, And How Can We Limit Them?

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Papers referenced in the video:
Human microbiome: an academic update on human body site specific surveillance and its possible role.
https://pubmed.ncbi.nlm.nih.gov/32524177/

Taxonomic signatures of cause-specific mortality risk in human gut microbiome.
https://pubmed.ncbi.nlm.nih.gov/33976176/

The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication.
https://pubmed.ncbi.nlm.nih.gov/32082260/

Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification.
https://pubmed.ncbi.nlm.nih.gov/30563917/

Short chain fatty acids in human large intestine, portal, hepatic and venous blood.

/* */