Toggle light / dark theme

Here’s my latest Opinion piece just out for Newsweek…focusing on cyborg rights.


Over the past half-century, the microprocessor’s capacity has doubled approximately every 18–24 months, and some experts predict that by 2030, machine intelligence could surpass human capabilities. The question then arises: When machines reach human-level intelligence, should they be granted protection and rights? Will they desire and perhaps even demand such rights?

Beyond advancements in microprocessors, we’re witnessing breakthroughs in genetic editing, stem cells, and 3D bioprinting, all which also hold the potential to help create cyborg entities displaying consciousness and intelligence. Notably, Yale University’s experiments stimulating dead pig brains have ignited debates in the animal rights realm, raising questions about the ethical implications of reviving consciousness.

Amid these emerging scientific frontiers, a void in ethical guidelines exists, akin to the Wild West of the impending cyborg age. To address these ethical challenges, a slew of futurist-oriented bills of rights have emerged in the last decade. One of the most prominent is the Transhumanist Bill of Rights, which is in its third revision through crowdsourcing and was published verbatim by Wired in 2018.

Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the ‘neutral mutation–random drift’ hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions. We highlight the difference between the original, the revised and the nearly neutral hypothesis, and re-emphasise that none of them equates to the null hypothesis of strict neutrality. We distinguish the neutral hypothesis of protein evolution, the main focus of the ongoing debate, from the neutral hypotheses of genomic and functional DNA evolution, which for many species are generally accepted. We advocate a further distinction between a narrow and an extended neutral hypothesis (of which the latter posits that random non-conservative amino acid substitutions can cause non-ecological phenotypic divergence), and we discuss the implications for evolutionary biology beyond the domain of molecular evolution. We furthermore point out that the debate has widened from its initial focus on point mutations, and also concerns the fitness effects of large-scale mutations, which can alter the dosage of genes and regulatory sequences. We evaluate the validity of neutralist and selectionist arguments and find that the tested predictions, apart from being sensitive to violation of underlying assumptions, are often derived from the null hypothesis of strict neutrality, or equally consistent with the opposing selectionist hypothesis, except when assuming molecular panselectionism. Our review aims to facilitate a constructive neutralist–selectionist debate, and thereby to contribute to answering a key question of evolutionary biology: what proportions of amino acid and nucleotide substitutions and polymorphisms are adaptive?

Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the ‘neutral mutation–random drift’ hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions. We highlight the difference between the original, the revised and the nearly neutral hypothesis, and re-emphasise that none of them equates to the null hypothesis of strict neutrality. We distinguish the neutral hypothesis of protein evolution, the main focus of the ongoing debate, from the neutral hypotheses of genomic and functional DNA evolution, which for many species are generally accepted. We advocate a further distinction between a narrow and an extended neutral hypothesis (of which the latter posits that random non-conservative amino acid substitutions can cause non-ecological phenotypic divergence), and we discuss the implications for evolutionary biology beyond the domain of molecular evolution. We furthermore point out that the debate has widened from its initial focus on point mutations, and also concerns the fitness effects of large-scale mutations, which can alter the dosage of genes and regulatory sequences. We evaluate the validity of neutralist and selectionist arguments and find that the tested predictions, apart from being sensitive to violation of underlying assumptions, are often derived from the null hypothesis of strict neutrality, or equally consistent with the opposing selectionist hypothesis, except when assuming molecular panselectionism. Our review aims to facilitate a constructive neutralist–selectionist debate, and thereby to contribute to answering a key question of evolutionary biology: what proportions of amino acid and nucleotide substitutions and polymorphisms are adaptive?

COVER STORY: The epigenetic clock uses DNA methylation to calculate the metric of “epigenetic age”. Epigenetic age acceleration (epigenetic > chronological age) has been repeatedly linked to pediatric asthma and allergic disease, demonstrating its potential as a diagnostic biomarker. However, questions remain about the accuracy and utility of epigenetic clocks in children.

This review by researchers at University of British Columbia examines the most used current epigenetic clocks and details the associations between epigenetic age acceleration and asthma/allergic disease. They explore the potential of the epigenetic clock as a biomarker for asthma and discuss the need for a pediatric epigenetic clock that is accurate in blood samples in order to maximize the utility of this powerful tool.

In a new study, Abudayyeh and Gootenberg led a team of scientists on a quest to identify and characterize Fanzor enyzmes in large-scale genetic databases. Their genetic mining venture, published in Science Advances, outlines the discovery of over 3,600 Fanzors in eukaryotes, including algae, snails, amoebas and the viruses that infect them.

Fanzors evolved new features to survive and thrive in eukaryotes

Five distinct families of Fanzors could be identified from the study data. By comparing the biological makeup of these families, Abudayyeh and colleagues could track their evolutionary history. Fanzors most likely evolved from proteins called TnpB, which are encoded in transposons – mobile genetic elements often nicknamed “jumping genes”. In Nature, the McGovern team hypothesized that the TnpB gene may have “jumped” from bacteria to eukaryotes in a genetic “shuffling” many years ago. Abudayyeh and Gootenburg’s new study and genetic tracing implies that this event likely occurred several times, with Fanzors “jumping” from viruses and symbiotic bacteria. Their analyses also suggest that once these genes had made their way into eukaryotes, they evolved new features that promoted their survival, including the ability to enter a cell’s nucleus and access its DNA.

Scientists have successfully gene-edited chickens to make them partially resistant to the bird flu and believe full immunity may be within reach.


Scientists from the University of Edinburgh’s Roslin Institute have successfully gene-edited chickens to make them partially resistant to the bird flu but experts argue that only full immunity can see the danger of the virus eradicated.

This is according to a report by BBC News published this week.

Influenza A viruses, which are responsible for causing bird flu, can be divided into many subtypes based on the surface proteins hemagglutinin (H) and neuraminidase (N). While certain bird flu subtypes are less dangerous, others are more virulent and capable of causing serious illness.

The Collective Intelligence of Cells During Morphogenesis: What Bioelectricity Outside the Brain Means for Understanding our Multiscale Nature with Michael Levin — Incredible Minds.

Recorded: April 29, 2023.

Each of us takes a remarkable journey from physics to mind: we start as a blob of chemicals in an unfertilized quiescent oocyte and becomes a complex, metacognitive human being. The continuous process of transformation and emergence that we see in developmental biology reminds us that we are true collective intelligences – composed of cells which used to be individual organisms themselves. In this talk, I will describe our work on understanding how the competencies of single cells are harnessed to solve problems in anatomical space, and how evolution pivoted this scaling of intelligence into the familiar forms of cognition in the nervous system. We will talk about diverse intelligence in novel embodiments, the scaling of the cognitive light cone of all beings, and the role of developmental bioelectricity as a cognitive glue and as the interface by which mind controls matter in the body. I will also show a new synthetic life form, and discuss what it means for bioengineering and ethics of human relationships to the wider world of possible beings. We will discuss the implications of these ideas for understanding evolution, and the applications we have developed in birth defects, cancer, and traumatic injury repair. By merging deep ideas from developmental biophysics, computer science, and cognitive science, we not only get a new perspective on fundamental questions of life and mind, but also new roadmaps in regenerative medicine, biorobotics, and AI.

Michael Levin received dual undergraduate degrees in computer science and biology, followed by a PhD in molecular genetics from Harvard. He did his post-doctoral training at Harvard Medical School, and started his independent lab in 2000. He is currently the Vannevar Bush chair at Tufts University, and an associate faculty member of the Wyss Institute at Harvard. He serves as the founding director of the Allen Discovery Center at Tufts. His lab uses a mix of developmental biophysics, computer science, and behavior science to understand the emergence of mind in unconventional embodiments at all scales, and to develop interventions in regenerative medicine and applications in synthetic bioengineering. They can be found at www.drmichaellevin.org/

The most common screening test for prostate cancer — a measure of prostate-specific antigen, or PSA, levels — so often suggests cancer where there is none that clinical guidelines no longer recommend the test for men over 70 and leave the decision up to younger patients.

Scientists at Stanford Medicine and their collaborators aim to make PSA screening more accurate — by calibrating PSA levels to each man’s genetics. Applying this type of personalization could significantly reduce overdiagnosis and better predict aggressive disease. Their research was published June 1 in Nature Medicine.

In addition to the regular blood-based PSA test, such personalized screening would require a germline genetic test, typically done on saliva, blood or cheek swab samples, to look for inherited genetic variants that affect PSA levels.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/