New research that helps explain the molecular processes involved in the painful autoimmune disease ankylosing spondylitis, or AS, may reduce the guessing game that health care providers currently play while attempting to treat the condition.
A team from Oregon Health & Science University and the VA Portland Health Care System has found a specific kind of AS treatment that is effective when used by patients who have a particular genetic mutation. Their study was published today in the journal Annals of the Rheumatic Diseases, and its findings could lead to more targeted, timely and patient-specific treatment recommendations.
“This is the first time research has shown that we might be able to use genetic markers to determine which therapy ankylosing spondylitis patients should receive,” said the study’s senior researcher, Ruth Napier, Ph.D., assistant professor of molecular microbiology and immunology, arthritis and rheumatic disease in the OHSU School of Medicine, and principal investigator with VA Portland. “These promising findings are encouraging. This is the first time I can say that I’m on the cusp of making a difference for patients with ankylosing spondylitis who seek relief.”
The challenge: There are very few ways to slow down Alzheimer’s disease or treat its symptoms, and there’s no cure — in 2021, nearly 120,000 Americans died from Alzheimer’s complications, making it one of the top 10 leading causes of death.
One genetic variant in particular — called APOE-e4 — is strongly tied to the brain disease. Having one copy makes a person 2–3 times more likely to develop Alzheimer’s, while having two copies (one from each parent) increases the risk by 8–12 times.
Antisocial Personality Disorder (ASPD) is a complex mental health condition characterized by a pervasive pattern of disregard for the rights of others and violation of societal norms. Untreated forms of ASPD affect about three percent of the general population. While the exact causes of ASPD remain unclear, researchers have identified several potential factors that may contribute to its development.
1. Genetic Factors: Studies suggest a genetic component in the development of ASPD, with heritability estimates ranging from 40% to 70%. Genetic variants involved in neurotransmitter regulation, such as serotonin and dopamine, have been implicated in antisocial behavior (Ficks & Waldman, 2014).
2. Environmental Factors: Childhood experiences play a crucial role in the development of ASPD. Early exposure to abuse, neglect, or inconsistent parenting has been linked to an increased risk of developing antisocial behavior (Rhee & Waldman, 2011).
In the quest to overcome the limitations of the human body and mind, scientists worldwide are diligently working on various technologies. The question arises: What will human beings become after undergoing numerous enhancements? Will we retain our identity while embracing the possibilities offered by artificial intelligence? What extraordinary capabilities will biotechnology bestow upon us? And how will our emotions and desires evolve as our bodies undergo transformation?
Join us on a captivating journey to the year 2050, as we delve into the frontiers of scientific research, consult with visionary futurists, and examine the predictions of brilliant minds. Together, we will explore the profound changes that lie ahead!
23andMe, the popular DNA testing company, has launched an investigation after client information was listed for sale on a cybercrime forum this week.
On Oct. 1, a post was published on the forum with a link to a sample of allegedly “20 million pieces of data” from the genetic testing company, claiming that it was “the most valuable data you’ll ever see.” The first leak included 1 million lines of data, but on Oct. 4, the threat actor began offering bulk data profiles ranging from $1 to $10 per account in batches of 100, 1,000, 10,000, and 100,000 profiles.
The information leaked in the breach includes names, usernames, profile photos, gender, birthdays, geographical location, and genetic ancestry results.
Scientists testing a new method of sequencing single cells have unexpectedly changed our understanding of the rules of genetics.
The genome of a protist has revealed a seemingly unique divergence in the DNA code signaling the end of a gene, suggesting the need for further research to better understand this group of diverse organisms.
Dr. Jamie McGowan, a postdoctoral scientist at the Earlham Institute, analyzed the genome sequence of a microscopic organism—a protist—isolated from a freshwater pond at Oxford University Parks. The research was published in PLoS Genetics.
Research shows that 20th-century commercial whaling has left a mark on the genetic diversity of surviving whales, emphasizing the importance of understanding and conserving their genetic history.
Commercial whaling in the 20th century decimated populations of large whales but also appears to have had a lasting impact on the genetic diversity of today’s surviving whales, new research from Oregon State University shows.
Grass may transfer genes from their neighbors in the same way genetically modified crops are made, a new study has revealed.
Research, led by the University of Sheffield, is the first to show the frequency at which grasses incorporate DNA from other species into their genomes through a process known as lateral gene transfer.
The stolen genetic secrets give them an evolutionary advantage by allowing them to grow faster, bigger or stronger and adapt to new environments quicker.
Tina Woods, serving as Healthy Longevity Champion for the National Innovation Center for Aging, sets forth her vision for a blueprint for healthy longevity for all. Her emphasis is on reaping the “longevity dividend” and achieving five additional years of healthy life expectancy while reducing health and wellbeing inequality. Woods elaborates on the role of emerging technologies like AI, machine learning, and advanced data analysis in comprehending and influencing biological systems related to aging. She also underscores the crucial role of lifestyle changes and the consideration of socio-economic factors in increasing lifespan. The talk also explores the burgeoning field of emotion AI and its application in developing environments for better health outcomes, with a mention of “Longevity Cities,” starting with a trial in Newcastle. In closing, Woods mentions the development of a framework for incentivizing businesses through measurement of their contribution to health in three areas: workforce health, consumer health through products and services, and community health. Woods envisions a future where businesses impacting health negatively are disincentivized, and concludes with the hope that the UK’s healthy longevity innovation mission can harness longevity science and data innovation to improve life expectancy.
00:00:00 — Introduction, National Innovation Center for Aging. 00:00:56 — Discussion on stagnating life expectancy and UK’s life sciences vision. 00:03:50 — Technological breakthroughs (including AI) in analyzing biological systems. 00:06:22 — Understanding what maintains health & wellbeing. 00:08:30 — Hype, hope, important of purpose. 00:10:00 — Psychological aging and “brain capital.“ 00:13:15 — Ageism — a barrier to progress in the field of aging. 00:15:46 — Health data, AI and wearables. 00:18:44 — Prevention is key, Health is an asset to invest in. 00:19:13 — Longevity Cities. 00:21:19 — Business for Health and industry incentives. 00:23:13 — Closing.
About the Speaker: Tina Woods is a social entrepreneur and system architect with a focus on health innovation at the intersection of science, technology, policy, and investment. She is the Founder and CEO of Collider Health and Business for Health, driving systemic change for better health through these platforms. She contributes to key UK health strategies and initiatives, like UKRI’s Healthy Ageing Industrial Strategy, and served as the Healthy Longevity Champion for the National Innovation Centre for Ageing. Woods has made significant contributions to AI in health and care, co-leading the Quantum Healthy Longevity Innovation Mission and authoring the book, “Live Longer with AI.” Previously, she served as the director of the All Party Parliamentary Group for Longevity secretariat. Woods is also the CEO & Founder of Collider Science, a social enterprise that encourages young people’s interest in science and technology. She holds a degree in genetics from Cornell University and an MBA from Bayes Business School in London.