Toggle light / dark theme

The most common screening test for prostate cancer — a measure of prostate-specific antigen, or PSA, levels — so often suggests cancer where there is none that clinical guidelines no longer recommend the test for men over 70 and leave the decision up to younger patients.

Scientists at Stanford Medicine and their collaborators aim to make PSA screening more accurate — by calibrating PSA levels to each man’s genetics. Applying this type of personalization could significantly reduce overdiagnosis and better predict aggressive disease. Their research was published June 1 in Nature Medicine.

In addition to the regular blood-based PSA test, such personalized screening would require a germline genetic test, typically done on saliva, blood or cheek swab samples, to look for inherited genetic variants that affect PSA levels.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

VIEW NOW: https://ow.ly/GMX050PMTMH

In this webinar, three experts will discuss how Precision NanoSystems’ modular microfluidic platform technologies and analytics can help scientists successfully design, develop, test, and scale-up promising mRNA-LNP vaccines and therapeutics from concept to clinic. Don’t miss this webinar, now available on demand.


Alreadyed? Click Here

Nucleic acids (e.g., siRNA, mRNA and saRNA) can be designed and formulated to silence, express, and edit specific genes providing a flexible and powerful approach to preventing and treating diseases. The recent commercialization and widespread distribution of COVID-19 mRNA vaccines has exemplified the massive potential of this new class of genomic medicines and vaccines to effectively thwart emerging viral threats and treat a wide range of challenging diseases. Part of developing a successful mRNA therapeutic or vaccine is choosing a delivery mechanism that protects the nucleic acids on the way to their target tissue. Encapsulating mRNA in lipid nanoparticles has proven to be one of the best vehicles for overcoming extracellular and intracellular barriers and safely delivering the treatment. Several mRNA-LNP formulations that target things like viral infections and cancers are being evaluated clinically.

In this webinar, three experts will discuss how Precision Nanosystems’ modular microfluidic platform technologies and analytics can help scientists successfully design, develop, test, and scale-up promising mRNA-LNP vaccines and therapeutics from concept to clinic. They will provide an overview of Precision NanoSystem’s Biopharma Services, and share examples from internal R&D work that demonstrate the versatility of the genetic medicine toolbox for rapidly developing RNA-LNP vaccines. You’ll also learn about Precision NanoSystem’s BioAssay services and the capabilities that are available to facilitate and accelerate drug development projects.

Researchers at Columbia University have developed a probiotic-guided chimeric antigen receptor (CAR)-T platform that uses engineered bacteria to infiltrate and produce synthetic antigen targets, enabling CAR-T cells to find, identify, and destroy tumor cells in situ. The results of in vivo preclinical tests suggest that the combined ProCAR cell therapy platform could expand the scope of CAR-T cell therapy to include difficult-to-target solid tumors.

Tal Danino, PhD, and Rosa L. Vincent, PhD, at Columbia University’s department of biomedical engineering, and colleagues, reported on their developments in Science, in a paper titled “Probiotic-guided CAR-T cells for solid tumor targeting,” in which they concluded, “These findings highlight the potential of the ProCAR platform to address the roadblock of identifying suitable CAR targets by providing an antigen that is orthogonal to both healthy tissue and tumor genetics … Overall, combining the advantages of tumor-homing bacteria and CAR-T cells provides a new strategy for tumor recognition and, in turn, builds the foundation for engineered communities of living therapies.”

Immunotherapies using CAR-T cells have proven successful in treating some types of blood cancers, but their efficacy against solid tumors remains elusive. A key challenge facing tumor-antigen targeting immunotherapies like CAR-T is the identification of suitable targets that are specifically and uniformly expressed on solid tumors, the authors noted. “A key challenge of antigen-targeted cell therapies relates to the expression patterns of the antigen itself, which makes the identification of optimal targets for solid tumor cell therapies an obstacle for the development of new CARs.” Solid tumors express heterogeneous and nonspecific antigens and are poorly infiltrated by T cells. As a result, the approach carries a high risk of fatal on-target, off-tumor toxicity, wherein CAR-T cells attack the targeted antigen on healthy vital tissues with potentially fatal effects.

In a recent study led by Ravi Salgia, M.D., Ph.D., the Arthur & Rosalie Kaplan Chair in Medical Oncology, a team of researchers from City of Hope, one of the largest cancer research and treatment organizations in the United States, and other institutions found that nongenetic mechanisms are important in lung cancer patients who develop a resistance to one cancer therapy. Their findings were published in the October 13 issue of the journal Science Advances.

The team’s study explored resistance to the anti-cancer medication sotorasib in patients with (NSCLC). Sotorasib inhibits a specific mutation of a protein, KRAS G12C, that causes unchecked cell growth.

The researchers’ findings suggest that, initially, most tumor cells are sensitive to sotorasib. But some cells can become tolerant to without resorting to or alterations by manipulating the KRAS-sotorasib interaction network. Furthermore, they found that if sotorasib treatment is withheld, the revert to becoming sensitive again, implying that the phenomenon is reversible and thus is driven by nongenetic mechanisms.

Researchers at Tokyo Tech have demonstrated that in-cell engineering is an effective method for creating functional protein crystals with promising catalytic properties. By harnessing genetically altered bacteria as a green synthesis platform, the researchers produced hybrid solid catalysts for artificial photosynthesis.

Photosynthesis is how plants and some microorganisms use sunlight to synthesize carbohydrates from carbon dioxide and water.

According to this information covid 19 sars is a chimeric virus that evolves with other genetic material which gives us clues for a proper antidote. Also it shows why it is so dangerous.


Ben Hu denies he was sick in late 2019, or that his coronavirus work led to COVID-19, and newly declassified U.S. intelligence doesn’t substantiate allegations against him.

I dont really care where it comes from but we need Crispr tec to be where any alteration we do want causes Zero un intended alterations any where else 100% of the time, aim for by 2030–2035 window.


A diverse set of species, from snails to algae to amoebas, make programmable DNA-cutting enzymes called Fanzors—and a new study from scientists at MIT’s McGovern Institute for Brain Research has identified thousands of them. Fanzors are RNA-guided enzymes that can be programmed to cut DNA at specific sites, much like the bacterial enzymes that power the widely used gene-editing system known as CRISPR. The newly recognized diversity of natural Fanzor enzymes, reported Sept. 27 in the journal Science Advances, gives scientists an extensive set of programmable enzymes that might be adapted into new tools for research or medicine.

“RNA-guided biology is what lets you make programmable tools that are really easy to use. So the more we can find, the better,” says McGovern Fellow Omar Abudayyeh, who led the research with McGovern Fellow Jonathan Gootenberg.

CRISPR, an ancient bacterial defense system, has made it clear how useful RNA-guided enzymes can be when they are adapted for use in the lab. CRISPR-based genome editing tools developed by MIT professor and McGovern investigator Feng Zhang, Abudayyeh, Gootenberg, and others have changed the way scientists modify DNA, accelerating research and enabling the development of many experimental gene therapies.

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3wDGy2i.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about an invention of a DNA bio computer.
Links:
https://www.nature.com/articles/s41586-023-06484-9
https://www.washington.edu/news/2016/04/07/uw-team-stores-di…perfectly/
Other videos:
https://youtu.be/x3jiY8rZAZs.
https://youtu.be/JGWbVENukKc.

#dna #biocomputer #genetics.

0:00 Quantum computer hype.
0:50 Biocomputers?
1:55 Original DNA computers from decades ago.
3:10 Problems with this idea.
3:50 New advances.
5:35 First breakthrough — DNA circuit.
7:30 Huge potential…maybe.

Support this channel on Patreon to help me make this a full time job: