Menu

Blog

Archive for the ‘genetics’ category: Page 94

Aug 18, 2023

‘Ice Bucket Challenge’ Gene Research Opens New Insights Into ALS Causes, Treatment

Posted by in categories: biotech/medical, genetics, neuroscience

Since 2014, the ALS Ice Bucket Challenge has inspired more than 17 million people to raise $115 million for The ALS Association, which has funded over 500 research projects with the money. Because of that boost, the first drug to treat ALS has been approved by the FDA, other new treatments are in testing, and scientists have been able to identify several genes that are connected to the disease.

While mutations in a gene called NEK1 have only been associated with around two percent of ALS cases, it is one of the primary genetic causes of ALS that have been revealed so far. Now investigators have learned more about how NEK1 mutations can lead to ALS, a disease in which the motor neurons that control movement degenerate and die, which causes paralysis and eventually, death. The work has been reported in Science Advances.

Aug 18, 2023

Genetic determinants of retinol circulation and their impact on health

Posted by in categories: biotech/medical, genetics, health

In a recent pre-print study posted to the medRxiv* server, researchers conducted a comprehensive genome-wide association study (GWAS) to elucidate the genetic architecture of circulating retinol, identify its potential causal relationships with various clinical phenotypes, and evaluate its therapeutic or nutritional implications.

Study: Genetic influences on circulating retinol and its relationship to human health. Image Credit: SciePro/Shutterstock.com.

*Important notice: medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Aug 17, 2023

This Scientist Is Building Custom Gene-Editing Tools—And Stands To Make Billions

Posted by in categories: biotech/medical, genetics

Benjamin Oakes’ Scribe Therapeutics is developing specialized Crispr proteins to tackle a wide range of diseases–and it’s garnered deals with Big Pharma potentially worth over $4 billion.

Aug 17, 2023

Genetic insights into human cortical organization and development through genome-wide analyses of 2,347 neuroimaging phenotypes

Posted by in categories: biotech/medical, genetics

Genome-wide association analyses of magnetic resonance imaging data describe the genetic architecture of 13 cortical phenotypes at both global and regional levels, implicating neurodevelopmental and constrained genes.

Aug 17, 2023

Connective Tissue Cells Reprogrammed Into Muscle Stem Cells Without Genetic Engineering

Posted by in categories: bioengineering, biotech/medical, genetics

A new method allows large quantities of muscle stem cells to be safely obtained in cell culture. This provides a potential for treating patients with muscle diseases – and for those who would like to eat meat, but don’t want to kill animals.

Aug 17, 2023

Elon Musk on Neuralink: Solving Brain Diseases & Reducing the Risk of AI

Posted by in categories: biotech/medical, Elon Musk, existential risks, genetics, robotics/AI, singularity

Elon Musk delves into the groundbreaking potential of Neuralink, a revolutionary venture aimed at interfacing with the human brain to tackle an array of brain-related disorders. Musk envisions a future where Neuralink’s advancements lead to the resolution of conditions like autism, schizophrenia, memory loss, and even spinal cord injuries.

Elon Musk discusses the transformative power of Neuralink, highlighting its role in restoring motor control after spinal cord injuries, revitalizing brain function post-stroke, and combating genetically or trauma-induced brain diseases. Musk’s compelling insights reveal how interfacing with neurons at an intricate level can pave the way for repairing and enhancing brain circuits using cutting-edge technology.

Continue reading “Elon Musk on Neuralink: Solving Brain Diseases & Reducing the Risk of AI” »

Aug 17, 2023

Genetically-modified neural stem cells show promising therapeutic potential for spinal cord injury

Posted by in categories: biotech/medical, genetics, neuroscience

A research team co-led by City University of Hong Kong (CityU) and The University of Hong Kong (HKU) has recently made a significant advancement in spinal cord injury treatment by using genetically-modified human neural stem cells (hNSCs).

They found that specifically modulating a to a certain level in hNSCs can effectively promote the reconstruction of damaged neural circuits and restore locomotor functions, offering great potential for new therapeutic opportunities for patients with spinal cord . The findings were published in the journal Advanced Science under the title “Transplanting Human Neural Stem Cells with ≈50% Reduction of SOX9 Gene Dosage Promotes Tissue Repair and Functional Recovery from Severe Spinal Cord Injury.”

Traumatic spinal cord injury is a devastating condition that commonly results from accidents such as falls, car crashes or sport-related injuries.

Aug 17, 2023

A frightening virus is killing a massive number of wild birds

Posted by in categories: biological, biotech/medical, genetics

Remember when eggs were so high? A vaccine for birds, now that can make money. 🤔

In the past two years, a viral disease has swept across much of the planet — not Covid but a type of avian flu. It’s devastated the poultry industry in the US, Europe, and elsewhere, sickening millions of farmed birds, which either die from infection or are killed by farmers seeking to stem the spread.


The ongoing outbreak of avian flu has killed hundreds of thousands — if not millions — of wild birds, including endangered species like the California condor. It’s one of the worst wildlife disease outbreaks in history. Having now spread across five continents and hundreds of wildlife species, scientists call the current outbreak a panzootic, meaning a pandemic among animals.

Continue reading “A frightening virus is killing a massive number of wild birds” »

Aug 16, 2023

Scientists engineer cooperation in cancer cells to activate apoptosis mechanisms

Posted by in categories: biotech/medical, genetics

Scientists at Stanford University have found a way to induce cell death in cancer cells with a method that could be effective in around 50% of cancers. In a paper, “Rewiring cancer drivers to activate apoptosis,” published in Nature, the team describes a new class of molecules called transcriptional/epigenetic CIPs (TCIPs) that can activate apoptosis with the help of cancer growth gene expressions within the cancer cells.

The researchers designed small molecules that bind specific transcriptional suppressors to transcription activators. The most potent molecule created, TCIP1, works by linking that bind BCL6 to those that bind transcriptional activators BRD4.

One of the components that makes cancer cells cancerous is that they ignore signals from surrounding healthy tissues to stop growing and to initiate apoptosis or cell death. The apoptosis pathways still exist but are actively blocked in certain types of cancer where the transcription factor B cell lymphoma 6 (BCL6) binds to the promoters of apoptosis and suppresses their expression through .

Aug 15, 2023

Electron transport chains as a window into the earliest stages of evolution

Posted by in categories: biological, chemistry, evolution, genetics

The origin and early evolution of life is generally studied under two different paradigms: bottom up and top down. Prebiotic chemistry and early Earth geochemistry allow researchers to explore possible origin of life scenarios. But for these “bottom–up” approaches, even successful experiments only amount to a proof of principle. On the other hand, “top–down” research on early evolutionary history is able to provide a historical account about ancient organisms, but is unable to investigate stages that occurred during and just after the origin of life. Here, we consider ancient electron transport chains (ETCs) as a potential bridge between early evolutionary history and a protocellular stage that preceded it. Current phylogenetic evidence suggests that ancestors of several extant ETC components were present at least as late as the last universal common ancestor of life. In addition, recent experiments have shown that some aspects of modern ETCs can be replicated by minerals, protocells, or organic cofactors in the absence of biological proteins. Here, we discuss the diversity of ETCs and other forms of chemiosmotic energy conservation, describe current work on the early evolution of membrane bioenergetics, and advocate for several lines of research to enhance this understanding by pairing top–down and bottom–up approaches.

Page 94 of 504First9192939495969798Last