Toggle light / dark theme

Scientist identifies mechanism to regenerate heart tissue

The MDI Biological Laboratory has announced new discoveries about the mechanisms underlying the regeneration of heart tissue by Assistant Professor Voot P. Yin, Ph.D., which raise hope that drugs can be identified to help the body grow muscle cells and remove scar tissue, important steps in the regeneration of heart tissue.

Heart disease is a leading cause of death in the western world. Yin is using zebrafish to study the regeneration of tissue because of the amazing capacity of these common aquarium fish to regenerate the form and function of almost any body part, including heart, bone, skin and blood vessels, regardless of their age. In contrast, the adult mammalian cardiovascular system has limited regenerative capacity.

“Although zebrafish look quite different from humans, they share an astonishing 70 percent of their genetic material with humans, including genes important for the formation of new heart muscle,” Yin said. “These genes are conserved in humans and other mammals, but their activity is regulated differently after an injury like a .”

You can now sequence your entire genome for under $1,000

It wasn’t all that long ago that the first human genome was sequenced – a massive, globally orchestrated scientific undertaking that took years and some US$3 billion to achieve.

Since then, rapid advancements in genetic technology and techniques have seen the cost and time required for genome sequencing drop dramatically, leading to this week’s remarkable announcement: the first whole genome sequencing service for consumers that costs less than $1,000.

At just $999, myGenome, from US-based genetics startup Veritas Genetics, is being billed by its makers as the first practical and affordable way for people to access unparalleled personal data on their individual genetic code. The company claims its personalised service offers an accessible way to keep tabs on your current health, keep you abreast of any potential future issues, and even know what inherited genetics you might pass onto your children.

Newly developed model of DNA sheds light on molecule’s flexibility

Knowledge of how DNA folds and bends could offer new perspective on how it is handled within cells while also aiding in the design of DNA-based nano-scale devices, says a biomedical engineer at Texas A&M University whose new motion-based analysis of DNA is providing an accurate representation of the molecule’s flexibility.

The model, which is shedding new light on the physical properties of DNA, was developed by Wonmuk Hwang, associate professor in the university’s Department of Biomedical Engineering, and his Ph.D. student Xiaojing Teng. Hwang uses computer simulation and theoretical analysis to study biomolecules such as DNA that carry out essential functions in the human body. His latest model, which provides a motion-based analysis of DNA is detailed in the scientific journal ACS Nano. The full article can be accessed at http://pubs.acs.org/doi/abs/10.1021/acsnano.5b06863.

In addition to housing the genetic information needed to build and maintain an organism, DNA has some incredibly interesting physical properties that make it ideal for the construction of nanodevices, Hwang notes. For example, the DNA encompassed within the nucleus of one human cell can extend to four feet when stretched out, but thanks to a number of folds, bends and twists, it remains in a space no bigger than one micron – a fraction of the width of a human hair. DNA also is capable of being programmed for self-assembly and disassembly, making it usable for building nano-mechanical devices.

Human-skin discovery suggests new anti-aging treatments

Layers in hairless skin (credit: Madhero88 and M.Komorniczak/Creative Commons)

For the first time, researchers have reported decreases in levels of a key molecule in aging human skin, which could lead to developing new anti-aging treatments and screening new compounds.

Components of a typical mitochondrion (credit: Kelvinsong/Creative Commons)

Scientists have known for some time that major structures in the cell called mitochondria (which generate and control most of the cell’s supply of energy) are somehow involved in aging, but the exact role of the mitochondria has remained unclear.

The longstanding “mitochondrial free radical theory of aging,” originally proposed by Professor Denham Harman in 1972, is currently the most widely accepted theory of aging. It proposes that mitochondria contribute to aging by producing free radicals — chemicals that can damage our genetic material and other molecules and so accelerate aging. Free-radical production increases lead to a cycle of further damage and further increases in free radicals.

Researcher develops technique for enhancing gene therapy

Using his knowledge of how genes are organized and repaired in human cells, Dr. Graham Dellaire, Dalhousie Medical School’s Cameron Research Scientist in Cancer Biology, has developed a technique that could make gene therapy more effective and safer to use. His work was recently published in Nucleic Acids Research and Nature.

CRISPR, named 2015’s breakthrough discovery of the year, stands for “Clustered Regularly-Interspaced Short Palindromic Repeats.” It can accurately target and edit DNA, offering the potential to cure genetic diseases and find new treatments for cancer.

To apply CRISPR in non-dividing cells—such as those in muscle and brain tissue—researchers must first make them behave like cells that divide. They do this by turning on a cellular process called homologous recombination, which protects DNA; the recombination allows a cell’s genes to be manipulated and rearranged without the possibility of causing more harm than good.

This genetics company claims it just achieved a major milestone in biology — and it could transform personalized medicine

Veritas Genetics, a Boston-based biotech company co-founded by Harvard geneticist George Church, is claiming it can now sequence your entire genome — the genetic blueprint inside all your cells that makes you who and what you are — for less than $1,000. That price tag includes an interpretation of the results and genetic counseling.

If the claim is true, it would shatter a long-held barrier in genetic medicine.

Reaching the $1,000 genome

The so-called $1,000 genome has long been a holy grail in genetics. While others — notably the company Illumina — have previously claimed to reach this milestone, these efforts did not include the cost of interpreting the results.

Human Babies from CRISPR Pigs

New genetic technologies like CRISPR/Cas9 gene editing and synthetic biology are leading us to entirely new definitions of disease. Now “patients” include people who want children who lack some of their own genes, or have additional ones that they themselves lack. Also among the new patients are people who in the past were too old to have children as well some women who get sick from pregnancy and childbirth, or even the idea of them. Technological advances on the horizon may eventually offer treatment for such conditions.

In February 2015 the British Parliament approved production of “three-parent” children by transferring the nucleus of one woman’s egg into the nucleus-less (“enucleated”) egg of a second woman to avoid the propagation of certain rare “mitochondrial” diseases, Though there were acknowledged risks of the unprecedented procedure (including the possibility of producing novel birth defects), the argument that prevailed was that some mitochondrial diseases are so devastating that it should be tried in the narrowly defined group of prospective mothers carrying defective mitochondria.

Not long afterward, news articles began to appear discussing use of the technique for an entirely different purpose. The procedure’s inventor, the Oregon Health & Science University biologist Dr. Shoukhrat Mitalipov, was now proposing to treat infertility in older women by transferring their egg nuclei into the enucleated eggs of younger women.