Toggle light / dark theme

Newly discovered mechanism enables precise gene regulation by combining DNA and RNA epigenetics

Our genes contain all the instructions our body needs to function, but their expression must be finely regulated to guarantee that each cell performs its role optimally. This is where DNA and RNA epigenetics come in: a series of mechanisms that act as “markers” on genes, to control their activity without modifying the DNA or RNA sequence itself.

Until now, DNA and RNA epigenetics were studied as independent systems. These two mechanisms seemed to function separately, each playing its own role in distinct stages of the gene regulation process.

Perhaps that was a mistake.

An Entire Book Was Written in DNA—and You Can Buy It for $60

As the rate of humanity’s data creation increases exponentially with the rise of AI, scientists have been interested in DNA as a way to store digital information. After all, DNA is nature’s way of storing data. It encodes genetic information and determines the blueprint of every living thing on earth.

And DNA is at least 1,000 times more compact than solid-state hard drives. To demonstrate just how compact, researchers have previously encoded all of Shakespeare’s 154 sonnets, 52 pages of Mozart’s music, and an episode of the Netflix show “Biohackers” into tiny amounts of DNA.

But these were research projects or media stunts. DNA data storage isn’t exactly mainstream yet, but it might be getting closer. Now you can buy what may be the first commercially available book written in DNA. Today, Asimov Press debuted an anthology of biotechnology essays and science fiction stories encoded in strands of DNA. For $60, you can get a physical copy of the book plus the nucleic acid version—a metal capsule filled with dried DNA.

What Is Cell Senescence And Inflammaging? Matt Yousefzadeh, PhD

What is cell senescence and inflammaging?

Featuring Matt Yousefzadeh, PhD


Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.

Study explores link between people’s professions and their genetic predisposition to neuropsychiatric traits

Polygenic scores (PGS) are metrics used to estimate the genetic predisposition of people to developing specific mental health conditions, personality traits or diseases. In recent years, these metrics have often been used to investigate the intricate connections between genes and environmental factors.

Researchers at the JJ Peters VA Medical Center, Icahn School of Medicine at Mount Sinai and other institutes recently carried out a study aimed at determining whether neuropsychiatric could predict the professional categories that individuals belong to. Their findings, published in Nature Human Behaviour, suggest that these scores weakly predict the professional category that people belong to.

“Neuropsychiatric disorders are both common and highly heritable, yet they remain heavily stigmatized,” Georgios Voloudakis, first author of the paper, told Medical Xpress.

DNA Nanorobots Unlock New Frontiers in Targeted Drug Delivery

Scientists develop DNADNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA). tabindex=0 DNA nanorobots capable of modifying artificial cells.

Immune Cell Dysfunction Causes Aging: Matt Yousefzadeh, PhD

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Gene mutation in roots that enhances microbe partnerships could cut fertilizer use

Researchers have discovered a biological mechanism that makes plant roots more welcoming to beneficial soil microbes. This discovery by John Innes Centre researchers paves the way for more environmentally friendly farming practices, potentially allowing farmers to use less fertilizer.

Production of most major crops relies on nitrate and phosphate fertilizers, but excessive fertilizer use harms the environment. If we could use mutually beneficial relationships between and soil microbes to enhance , then we could potentially reduce the use of inorganic fertilizers.

Researchers in the group of Dr. Myriam Charpentier discovered a mutation in a gene in the legume Medicago truncatula that reprograms the signaling capacity of the plant so that it enhances partnerships with nitrogen fixing bacteria called rhizobia and arbuscular mycorrhiza fungi (AMF) which supply roots with phosphorus.

Tapered polymer fibers enhance light delivery for neuroscience research

Researchers have developed a reliable and reproducible way to fabricate tapered polymer optical fibers that can be used to deliver light to the brain. These fibers could be used in animal studies to help scientists better understand treatments and interventions for various neurological conditions.

The tapered fibers are optimized for neuroscience research techniques, such as optogenetic experiments and fiber photometry, which rely on the interaction between genetically modified neurons and delivered to and/or collected from the .

“Unlike standard optical fibers, which are cylindrical, the tapered fibers we developed have a conical shape, which allows them to penetrate the tissue with more ease and to deliver light to larger volumes of the brain,” said research team member Marcello Meneghetti from the Neural Devices and Gas Photonics group at the Technical University of Denmark.

How Protein Shapes Are Rewriting the Story of Life on Earth

Researchers have innovatively merged protein structural data with genetic sequences to construct evolutionary trees, revealing deep-rooted relationships among species.

A species is a group of living organisms that share a set of common characteristics and are able to breed and produce fertile offspring. The concept of a species is important in biology as it is used to classify and organize the diversity of life. There are different ways to define a species, but the most widely accepted one is the biological species concept, which defines a species as a group of organisms that can interbreed and produce viable offspring in nature. This definition is widely used in evolutionary biology and ecology to identify and classify living organisms.

Brain Oscillations Decode Pain Intensity

Gamma oscillations in the brain reveal pain intensity, driven by PV interneurons in the somatosensory cortex. New research highlights their role as biomarkers and therapeutic targets for pain management.


Summary: Parvalbumin (PV) interneurons in the primary somatosensory cortex (S1) have been identified as key players in encoding pain intensity and driving gamma oscillations, according to a study. Cross-species experiments confirmed that gamma oscillations in S1 selectively reflect pain levels in humans and are linked to PV interneuron activity in rodents.

Optogenetic manipulation of these interneurons demonstrated their ability to modulate pain-related behaviors, solidifying their role in pain processing. The findings establish a direct connection between PV interneurons and gamma oscillations, highlighting their potential as a biomarker and target for pain therapies.